COMMITTENTE:

RETE FERROVIARIA ITALIANA S.P.A. DIREZIONE INVESTIMENTI

SOGGETTO TECNICO:

RFI - DIREZIONE TERRITORIALE PRODUZIONE DI FIRENZE S.O. INGEGNERIA

PROGETTAZIONE: MANDATARIA

PROGETTO DEFINITIVO

LINEA PISTOIA - LUCCA - VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA - LUCCA - PISA S.R. TRATTA PESCIA - LUCCA

11 - OPERE D'ARTE Ponte stradale su Canale Ozzoretto SCALA di Foglio Relazione tecnica e di calcolo NILIMEDAZ

PRUGETTO/ANNO	30110FK.	LIVELLO	NOME DOC.	PRUGR.UP.	FASE FUNZ.	NUMERAZ.
1 3 4 6 P O	S 1 1	PD	TGPN	1 9	0 1	E 0 0 1

Revis.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato	Data
А	Prima Emissione	G. Tanzi	18/09/2018						
									·

POSIZIONE ARCHIVIO	LINEA	SE[DE TECN.	6 - N	IOME DOO	1 [JMERAZ.
	Verificato e tras	messo	Data	Convalidato	Data	Archiviato	Data

1346-PO-S11-PD-TGPN-19-01-E001.dwg	

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

INDICE

1.	IN'	ГRО	DUZIONE	1
2.	NC)RM.	ATIVA E DOCUMENTI DI RIFERIMENTO	7
	2.1.	NO	RMATIVA DI RIFERIMENTO	7
3.	MA	TER	UALI	8
	3.1.	MA	TERIALI IMPALCATO	8
	3.2.	MA	TERIALI SPALLA	10
	3.3.	MA	TERIALE DEL RILEVATO A MONTE DELLA SPALLA	10
4.	IMI	PAL	CATO A TRAVI INCORPORATE	11
	4.1.	AN.	ALISI DEI CARICHI	11
	4.1.	1.	Carichi permanenti	12
	4.1.	2.	Carichi accidentali	12
	4.1.	.3.	Azioni sismiche	15
	4.2.	AN.	ALISI DELL'IMPALCATO	17
	4.2.	1.	Calcolo delle sollecitazioni su una fascia di 4 metri	17
	4.2.	2.	Sollecitazioni sulla trave di bordo fascia	19
	4.2.	.3.	Riepilogo delle sollecitazioni di progetto	21
	4.3.	VE	RIFICHE SULL'IMPALCATO	22
	4.3.	1.	Verifiche di resistenza dell'impalcato	22
	4.3.	2.	Verifiche di deformabilità	23
	4.4.	AZ]	IONI SUGLI APPOGGI	24
5.	SPA	ALLE	Ξ	25
	5.1.	AN	ALISI DEI CARICHI	25
	5.1.	1.	Peso proprio della spalla e pesi permanenti portati	25
	5.1.	2.	Spinta statica del terreno	26
	5.1.	.3.	Sovraccarichi da traffico stradale sul rilevato a tergo della spalla	27
	5.1.	4.	Azioni orizzontali da traffico (Frenatura/Avviamento)	28
	5.1.	5.	Azione sismica	28
	5.1.	.6.	Sovraspinta sismica del terreno	
	5.1.	7.	Forze inerziali dovute al sisma	33
	5.1.	8.	Carichi sui marciapiedi	33

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.1.9.	Azioni da impalcato	34
5.1.10.	Resistenza parassite sui vincoli	34
5.1.11.	Azioni sul paraghiaie – Azione verticale da traffico ferroviario	34
5.2. CC	OMBINAZIONI DEI CARICHI E CRITERI DI VERIFICA	36
5.2.1.	Combinazioni delle azioni	36
5.3. MO	DDELLO DI CALCOLO	43
5.4. SC	LLECITAZIONI DI PROGETTO SULLA PLATEA DI FONDAZIONE	49
5.5. VE	RIFICHE STRUTTURALI	50
5.5.1.	Verifiche del plinto di fondazione	52
5.5.2.	Verifiche del muro frontale	61
5.5.3.	Verifiche del muro andatore	69
5.5.4.	Verifiche del muro paraghiaia	77
5.6. SP.	ALLA - INCIDENZA ARMATURE	84

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

1. INTRODUZIONE

La presente relazione di calcolo strutturale è relativa alla progettazione del nuovo ponte stradale ubicato nel comune di Altopascio (LU) all'altezza del ponte ferroviario alla progressiva del km 40+195, in corrispondenza del deflusso di Fosso Ozzoretto.

L'intervento è conseguente al raddoppio della linea ferroviaria compresa tra le stazioni di Pescia e Lucca, e alla soppressione del passaggio a livello al km 41+108. La viabilità verrà ripristinata mediante una nuova strada che collegherà Via di Tiglio a Via del Corazza con conseguente realizzazione del ponte in corrispondenza del Fosso Ozzoretto.

L'impalcato è a travi incorporate di luce teorica L (distanza appoggi) pari a 20 m.

La spalla definita A, ha una fondazione costituita da un plinto su pali di spessore 1,8 m e dimensioni 5,6 x 7,7.

La palificata si compone di 6 pali trivellati di diametro pari a 1,2 metro con interasse nelle due direzioni di 3,6 m.

Il muro frontale è spesso 1,35 m, alto 3,10 e larghezza 7,10 m. Il muro paraghiaia, anch'esso avente larghezza pari a 7,10 m, è spesso 0,35 m e ha un'altezza di 0,85 m rispetto alla sommità del muro frontale. I due muri andatori di spessore 0,7 m, hanno altezza pari a 3,95 m.

L'altezza totale della spalla è 5,75 metri.

Lungo il lato esterno della carreggiata si considera in sede progettuale la presenza di un marciapiede adibito ai pedoni.

Si riportano nel seguito i prospetti e le sezioni descrittivi dell'opera in esame.

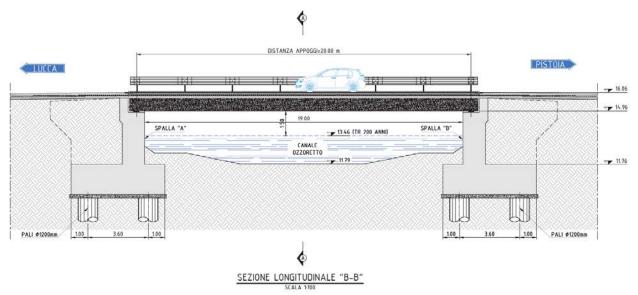


Figura 1-1 Sezione longitudinale dell'opera

Mandanti

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

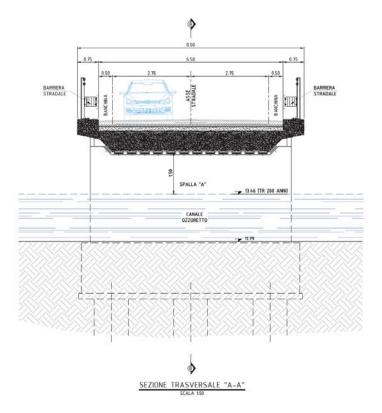
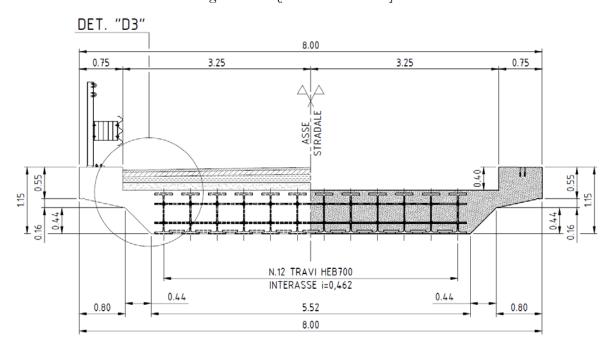



Figura 1-2 Sezione trasversale dell'opera

SEZIONE "C-C"
SCALA 1:50

Figura 1-3 Sezione trasversale dell'impalcato

Mandanti

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

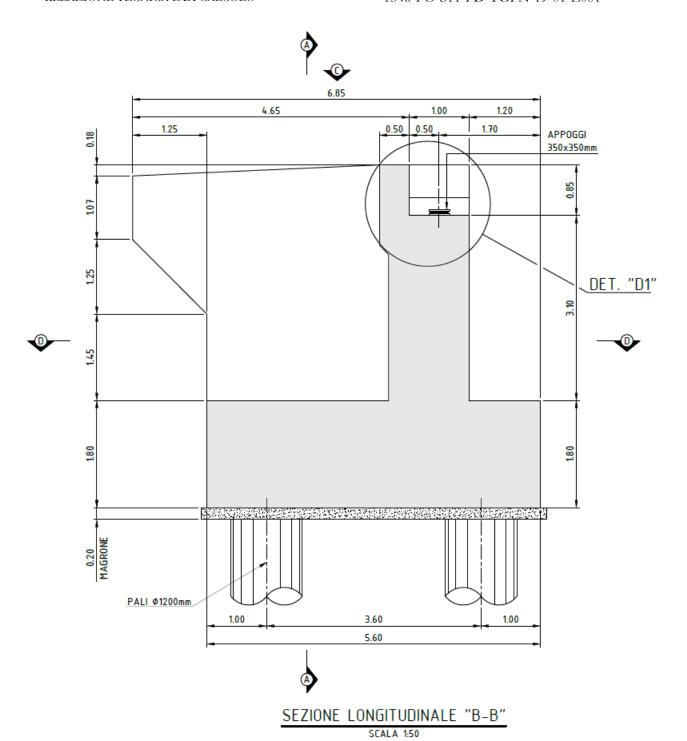


Figura 1-4 Sezione longitudinale della spalla

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

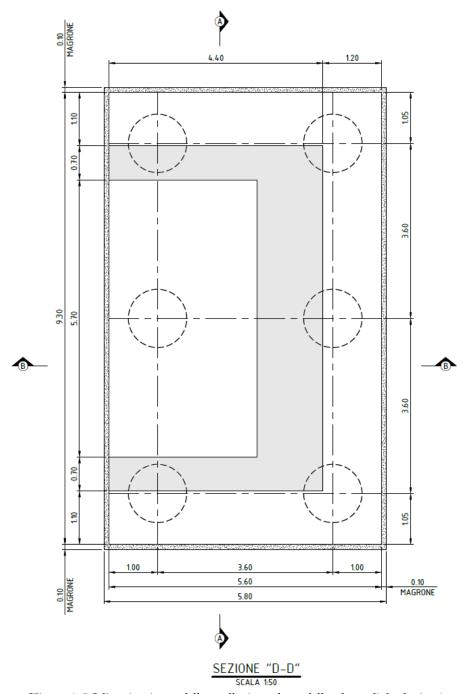


Figura 1-5 Vista in pianta della spalla (estradosso della platea di fondazione)

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

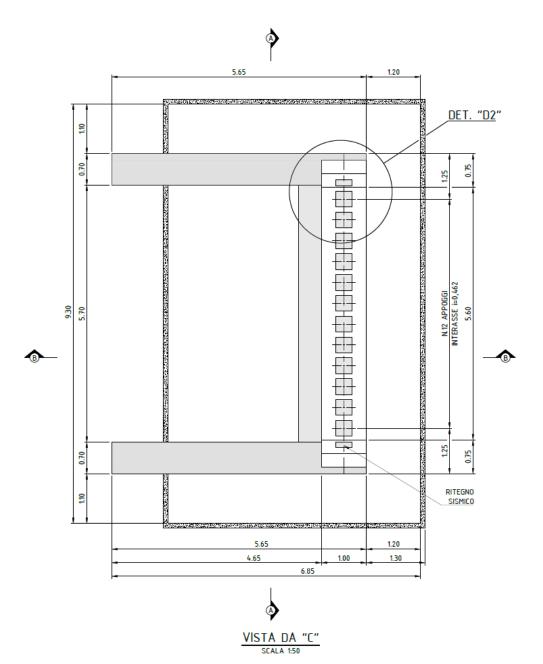


Figura 1-6 Vista in pianta della spalla (piano degli appoggi)

Lo schema dei vincoli per il ponte in esame è quello indicato nella seguente immagine e si compone di dodici appoggi, che si differenziano per il grado di vincolo imposto rispetto gli spostamenti, di seguito si riporta una breve descrizione dello schema di vincolo adottato per il ponte in esame:

Mandanti

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

	A1 ↔
	A2 ↔
	A 3 ↔
	∆ 4 ↔
	A 5 ↔
	A 6 ↔
	A7 ↔
♦ A8	A8 ↔
♦ A9	A9 💠
	A10 ↔
	∆11 ↔
⊙ A12	A12 ←

Appoggio fisso

Appoggio multidirezionale

Appoggio unidirezionale

M— Appoggio fisso a rigidezza variabile

Appoggio fisso con centraggio giochi

Le verifiche della presente relazione vengono effettuate sulla spalla A.1 con appoggi fissi.

Mandanti

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

2. NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1. NORMATIVA DI RIFERIMENTO

La normativa di riferimento per la progettazione in oggetto è la seguente: Norme tecniche per le costruzioni

• D.M. 17/01/2018: Norme tecniche per le costruzioni (d'ora in avanti definite NTC18);

Specifiche tecniche ed istruzioni RFI

•	RFI DTC SI MA IFS 001 B	Manuale di progettazione delle opere civili - PARTE I - DISPOSIZIONI GENERALI
•	RFI DTC SI PS MA IFS 001 A	Manuale di progettazione delle opere civili - PARTE II -
		SEZIONE 1 – AMBIENTE E GEOLOGIA
•	RFI DTC SI PS MA IFS 001 A	Manuale di progettazione delle opere civili - PARTE II -
		SEZIONE 2 – PONTI E STRUTTURE
•	RFI DTC SI CS MA IFS 001 A	Manuale di progettazione delle opere civili - PARTE II -
		SEZIONE 3 – CORPO STRADALE
•	RFI DTC SI PS MA IFS 001 A	Manuale di progettazione delle opere civili - PARTE II -
		SEZIONE 5 – PRESCRIZIONI PER I MARCIAPIEDI
		E LE PENSILINE

- RFI DTC SICS SP IFS 001 B del 24-12-15 Capitolato appalto OOCC
- RFI DTC INC PO SP IFS 001 A Specifica per la Progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- RFI DTC INC PO SP IFS 004 A Specifica per la Progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio "T" incorporate nel calcestruzzo

Eurocodici:

- UNI EN 1990: Eurocodice Criteri generali di progettazione strutturale.
- UNI EN 1991: Eurocodice 1 Azioni sulle strutture.
- UNI EN 1992: Eurocodice 2 Progettazione delle strutture di calcestruzzo.
- UNI EN 1993: Eurocodice 3 Progettazione delle strutture di acciaio.
- UNI EN 1993: Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo.
- UNI EN 1997: Eurocodice 7 Progettazione geotecnica.
- UNI EN 1998: Eurocodice 8 Progettazione delle strutture per la resistenza sismica.

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

3. MATERIALI

3.1. MATERIALI IMPALCATO

I requisiti minimi delle miscele di calcestruzzo sono individuati in tabella 6.5.5.1 del Capitolato d'Appalto RFI. Per il copriferro di progetto, individuato a partire dalla classe di esposizione ambientale, si fa riferimento alla tabella del par. 2.5.2.2.3.2 del Manuale di Progettazione RFI.

Tabella 6.5.5.1 – Requisiti minimi delle miscele

	I	II	III	IV	v	VI	VII	VIII
Tip calces		Campi di impiego	Classe di esposizione ambientale (UNI EN 206) ¹	Rapporto a/c max	Classe di resistenza minima [C(fck/Rck) _{min}]	Classe di consistenza	Tipo di cemento	Classe di resistenza di calcolo (MPa)
	1	Impalcati in c.a. ordinari Solette in c.a. in elevazione	XC3	0.55	C30/37	S4,S5	CEM I,II,III,IV,V	Rck
C**	2	Pile e spalle Baggioli e pulvini Strutture in c.a. in elevazione	XC3	0.55	C30/37	S3,S4	СЕМ І,П,ПІ,IV,V	Rck
	1	Pali (di paratie o opere di sostegno), diaframmi e relativi cordoli di collegamento gettati in opera	XC2	0.60	C25/30	84, 85	CEM III,IV,V	30
H**	2	Pali di fondazione gettati in opera	XC2	0.60	C25/30	S4, S5	CEM III,IV,V	30
	3	Pali di fondazione prefabbricati	[XA1]	0.50	C32/40	S4, S5	CEM III,IV,V	Rck
ı		Magrone di riempimento o livellamento	X0	-	C12/15	-	CEM I,II,III,IV,V	Rck

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto

1346-PO-S11-PD-TGPN-19-01-E001

Elemento strutturale	Categoria di esposizione minima	Copriferro minimo
Pali (di paratie o opere di sostegno), diaframmi e relativi cordoli di collegamento gettati in opera	XC2	60mm
Pali/diaframmi di fondazione gettati in opera	XC2	60mm
Pali di fondazione prefabbricati	XA1	60mm
Solettoni di fondazione, fondazioni armate	XC2	40mm
Fondazioni non armate (pozzi, sottoplinti, ecc.)	XC2	40mm
Cunette canalette e cordoli	XC1	40mm
Opere in elevazione in viste (pile, spalle, baggioli)	XC3	40mm
Opere in elevazione con superfici interrate o non ispezionabili	XC3	40mm
Solette estradosso	XC3	35mm
Solette intradosso (getto in opera)		35mm
Impalcati armatura ordinaria	XC3	40mm

tabella 2.5.2.2.3.2.-1

Calcestruzzo soletta impalcato:

Tipo	C 30/37
Classe di esposizione	XC3
Copriferro	40 mm
Rapporto a/c massimo	0.55
Classe di consistenza	S3, S4
Resistenza cubica caratteristica a compressione	$R_{ck} \ge 40 \text{ N/mm}^2$
Resistenza caratteristica a trazione	$f_{ctk} \ge 2.169 \text{ N/mm}^2$

 $E_{cm} = 33642.8 \text{ N/mm}^2$ Modulo elastico $\gamma_{cls} = 25 \text{ kN/m}^3$ Peso dell'unità di volume

Acciaio da carpenteria in barre da c.a. e reti elettrosaldate:

Tipo B450C Resistenza caratteristica di snervamento $F_{yk} \ge 450 \text{ MPa}$ $f_{tk} \ge 540 \text{ N/mm}^2$ Resistenza caratteristica a rottura $E_s = 206000 \text{ N/mm}^2$ Modulo elastico $\gamma_{acc} = 78.5 \text{ kN/m}^3$ Peso dell'unità di volume

Carpenteria metallica:

EN 10025-2 S355 J0+N Tipo $F_{yk} \geq 355 \; N/mm^2$ Resistenza caratteristica di snervamento $f_{tk} \ge 510 \text{ N/mm}^2$ Resistenza caratteristica a rottura

Mandataria

STUDIO GEOTECNICO ITALIANO 11

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto

1346-PO-S11-PD-TGPN-19-01-E001

3.2. MATERIALI SPALLA

I requisiti minimi delle miscele di calcestruzzo sono individuati in tabella 6.5.5.1 del Capitolato d'Appalto RFI. Per il copriferro di progetto, individuato a partire dalla classe di esposizione ambientale, si fa riferimento alla tabella del par. 2.5.2.2.3.2 del Manuale di Progettazione RFI.

In accordo alla tabella il calcestruzzo impiegato per le spalle è il seguente:

• Calcestruzzo spalle:

Tipo C 30/37
Classe di esposizione XC3
Copriferro 40 mm
Rapporto a/c massimo 0.55
Classe di consistenza S3, S4

Peso dell'unità di volume $\gamma_{cls} = 25 \text{ kN/m}^3$

• Acciaio in barre da c.a. e reti elettrosaldate:

3.3. MATERIALE DEL RILEVATO A MONTE DELLA SPALLA

A monte della spalla si assumono i parametri geotecnici di un rilevato stradale in rettilineo con le caratteristiche meccaniche come indicato dal Manuale di Progettazione (PARTE II – SEZIONE 3 - 3.8.1.3.3):

Peso dell'unità di volume
 Angolo di attrito
 Coesione efficace
 γ = 19 kN/m3
 φ' = 35°
 c' = 0 kPa

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

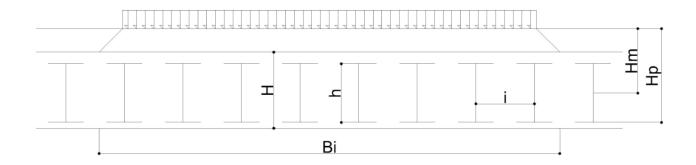
Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

4. IMPALCATO A TRAVI INCORPORATE

4.1. ANALISI DEI CARICHI

Il ponte in esame è un ponte a travi incorporate su una luce di calcolo di 20 m.

L'elemento strutturale resistente sono le travi in acciaio. Si ipotizza di impiegare 12 profili HEB 700 (classe 1) ad interasse di 0.42 m come suggerito dal Manuale di Progettazione RFI al §2.9.7.


Il calcolo di verifica viene eseguito per una porzione intermedia di solettone a travi incorporate, larga 4.00m, sulla quale grava il carico della carreggiata stradale. Lo spessore dell'impalcato è di 80 cm.

Si riportano nel seguito le caratteristiche geometriche del profilo scelto, con riferimento alle usuali simbologie:

PROFILI METALLICI: Profilo = "HEB 700"

$$b=0.3 \; \textit{m} \quad h=0.7 \; \textit{m} \quad i=0.42 \; \textit{m} \qquad t_w=1.7 \; \textit{cm} \qquad t_f=3.2 \; \textit{cm} \qquad A_s=306 \; \textit{cm}^2$$

$$J_s=256900 \; \textit{cm}^4 \qquad W=7340 \; \textit{cm}^3 \qquad S=4163.5 \; \textit{cm}^3 \qquad p=2410 \; \frac{N}{m}$$

$$f_{yk}\coloneqq 355 \; \frac{N}{mm^2} \qquad \gamma_d\coloneqq 1.05 \qquad n_{tot}\coloneqq \text{trunc}\left(\frac{4\cdot m}{i}\right)=9$$

$$n_t\coloneqq n_{tot} \quad \text{n° travi di calcolo su zona d'influenza considerata}$$
 • IMPALCATO:
$$B_b\coloneqq 4\cdot m \qquad H\coloneqq h+0.1\cdot m=0.8 \; m \qquad H_p\coloneqq H+0.2 \; m$$

$$B_i\coloneqq B_b \qquad H_m\coloneqq H_p-\frac{h}{2}=0.65 \; m$$

$$\gamma_{CLS}\coloneqq 25 \; \frac{kN}{m^3} \qquad E\coloneqq 20600 \; MPa \qquad f_{ck}\coloneqq 25 \; MPa$$

 $R \coloneqq 0 \ \mathbf{m}$ · Parametri forza centrifuga:

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

4.1.1. Carichi permanenti

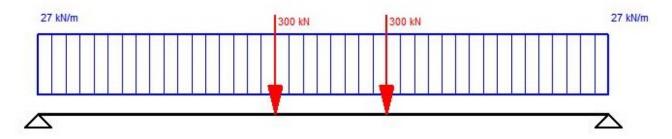
I pesi si valutano considerando un peso specifico del cls di 25 kN/mc e un peso specifico dell'acciaio pari a 78.5kN/mc. Il peso del calcestruzzo è comprensivo della soletta, delle predalle e dei marciapiedi. Il peso della sovrastruttura stradale è stato calcolato a partire da un peso di volume pari a 20 kN/mc. Si considera inoltre la presenza di barriera antirumore sul solo lato esterno.

Carichi permanenti:

• Peso delle travi in acciaio
$$a_1 \coloneqq n_{tot} \cdot p \cdot 1.35 = 29.28 \; \frac{kN}{m}$$

• Peso cls in opera
$$b_1 \coloneqq \left(\left\langle B_i \cdot H \right\rangle - \left\langle n_{tot} \cdot A_s \right\rangle \right) \cdot \gamma_{CLS} \cdot 1.35 = 98.71 \frac{kN}{m}$$

• Peso conglomerato
$$c_1 \coloneqq B_i \cdot 0.3 \cdot m \cdot 20 \cdot \frac{kN}{m^3} \cdot 1.5 = 36 \cdot \frac{kN}{m}$$
 bituminoso


Peso Permanenti totale: $p_{p1} \coloneqq a_1 + b_1 + c_1 = 163.99 \frac{kN}{m}$

4.1.2. Carichi accidentali

4.1.2.1. Azioni da traffico ferroviario

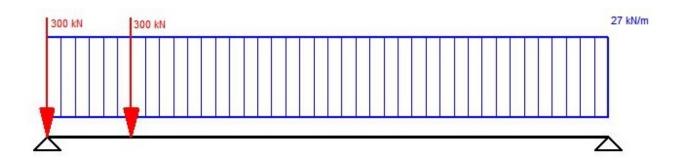
Si valutano i valori caratteristici e frequenti dovuti al transito dei veicoli definiti a favore di sicurezza dallo schema di carico 1 previsto da NTC'18.

Carico equivalente flettente:

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

$$\begin{split} M_1 \coloneqq & \left(300 \ \textit{kN} + 9 \ \frac{\textit{kN}}{\textit{m}^2} \cdot 3 \ \textit{m} \cdot \frac{\textit{L}}{2} \right) \cdot \frac{\textit{L}}{2} - 9 \ \frac{\textit{kN}}{\textit{m}^2} \cdot 3 \cdot \textit{m} \cdot \frac{\textit{L}}{2} \cdot \frac{\textit{L}}{4} - 300 \ \textit{kN} \cdot 0.6 \ \textit{m} = 4170 \ \textit{kN} \cdot \textit{m} \\ & M_1 \cdot \frac{8}{\textit{L}^2} = 83.4 \ \frac{1}{\textit{m}} \cdot \textit{kN} \end{split}$$


$$p_1 = 1.45 \cdot M_1 \cdot \frac{8}{L^2} = 120.93 \frac{kN}{m}$$

$$M_{1freq.} \coloneqq \left(300 \ \textit{kN} \cdot 0.75 + 9 \ \frac{\textit{kN}}{\textit{m}^2} \cdot 3 \ \textit{m} \cdot 0.4 \cdot \frac{\textit{L}}{2}\right) \cdot \frac{\textit{L}}{2} - 9 \ \frac{\textit{kN}}{\textit{m}^2} \cdot 3 \ \textit{m} \cdot 0.4 \cdot \frac{\textit{L}}{2} \cdot \frac{\textit{L}}{4} - 300 \ \textit{kN} \cdot 0.75 \cdot 0.6 \ \textit{m} = 2655 \ \textit{kN} \cdot \textit{m}$$

$$M_{1freq.} \cdot \frac{8}{L^2} = 53.1 \frac{1}{m} \cdot kN$$

$$p_{1freq.} = 1.45 \cdot M_{1freq.} \cdot \frac{8}{L^2} = 77 \cdot \frac{kN}{m}$$

Carico equivalente tagliante:

$$T_1 \coloneqq \left(300 \cdot kN \cdot L + 300 \ kN \cdot (L - 1.2 \cdot m) + 9 \ \frac{kN}{m^2} \cdot 3 \cdot m \cdot L \cdot \frac{L}{2}\right) \cdot \frac{1}{L} = 852 \ kN$$

$$p_2 \coloneqq 1.45 \cdot T_1 \cdot \frac{2}{L} = 123.54 \ \frac{kN}{m}$$

$$T_{1freq.} \coloneqq \left(300 \cdot kN \cdot 0.75 \cdot L + 300 \ kN \cdot 0.75 \cdot (L - 1.2 \cdot m) + 9 \ \frac{kN}{m^2} \cdot 3 \cdot m \cdot 0.4 \cdot L \cdot \frac{L}{2}\right) \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{L}{2} \cdot \frac{1}{L} = 544.5 \ kN \cdot 10.4 \cdot L \cdot \frac{L}{2} \cdot \frac{L}{2$$

$$p_{2freq.} \coloneqq 1.45 \cdot T_{1freq.} \cdot \frac{2}{L} = 78.95 \frac{kN}{m}$$

4.1.2.2. Forza centrifuga

La forza centrifuga è nulla perché la strada è in rettifilo sul ponte.

Mandataria

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

4.1.2.3. Azione di frenatura

L'azione di frenatura dei veicoli viene stimata a partire dalla relazione indicata in NTC'18 al §5.1.3.5.

$$Q_{f} \coloneqq \text{if } 180 \ \textit{kN} \le 0.6 \cdot (2 \cdot 300 \ \textit{kN}) + 0.1 \cdot 9 \ \frac{\textit{kN}}{m^{2}} \cdot 3 \cdot \textit{m} \cdot L \le 900 \ \textit{kN}$$

$$\parallel 0.6 \cdot (2 \cdot 300 \ \textit{kN}) + 0.1 \cdot 9 \ \frac{\textit{kN}}{m^{2}} \cdot 3 \cdot \textit{m} \cdot L$$

$$\text{else if } 0.6 \cdot (2 \cdot 300 \ \textit{kN}) + 0.1 \cdot 9 \ \frac{\textit{kN}}{m^{2}} \cdot 3 \cdot \textit{m} \cdot L < 180 \ \textit{kN}$$

$$\parallel 180 \ \textit{kN}$$

$$\text{else if } 0.6 \cdot (2 \cdot 300 \ \textit{kN}) + 0.1 \cdot 9 \ \frac{\textit{kN}}{m^{2}} \cdot 3 \cdot \textit{m} \cdot L > 900 \ \textit{kN}$$

$$\parallel 900 \ \textit{kN}$$

$$\parallel 900 \ \textit{kN}$$

4.1.2.4. Azione della folla

L'azione della folla compatta sul ponte, agente con intensità nominale, comprensiva degli effetti dinamici, è considerata come da NTC'18.

• Folla:

$$p_5 = 5 \frac{kN}{m^2} \cdot 1.5 \ m \cdot 1.5 = 11.25 \frac{kN}{m}$$

La pressione del vento si valuta secondo le disposizioni delle NTC 2018. La pressione del vento calcolata è la seguente:

$$P_v = 1.389 \frac{kN}{m^p}$$

L'azione del vento si considera agente sull'altezza dell'impalcato.

$$p_6 \coloneqq \langle P_v \rangle \cdot (5 \cdot m + H) \cdot 1.5 = 12.08 \frac{kN}{m}$$

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

4.1.3. Azioni sismiche

Le azioni sismiche agenti sull'impalcato sono valutate in relazione al periodo di riferimento V_R ricavato dal prodotto della vita nominale V_N per il coefficiente d'uso C_U . Per l'opera in esame e facendo riferimento a quanto prescritto dal Manuale di Progettazione 2018 di RFU, sono stati considerati i seguenti valori: Tipo di costruzione $2 \rightarrow V_N = 50$ anni; Classe d'uso III $\rightarrow C_U = 1.5$

 $V_R=75$ anni

Lo spettro di risposta è stato valutato considerando una categoria di sottosuolo "C" e fattore di struttura q=1. I parametri indipendenti sono quindi i seguenti:

$$CS \coloneqq \text{``C''}$$

$$T_{C.s} = 0.298$$

$$a_q = 0.154$$

$$F_0 = 2.389$$

$$\xi \coloneqq 5\%$$

$$_T \coloneqq 1$$

 $q \coloneqq 1$

I parametri dipendenti sono i seguenti:

- parametri dipendenti:

$$\begin{split} S_1 \coloneqq & S_S \boldsymbol{\cdot} S_T \!=\! 1.5 & \eta \coloneqq \max \left(\sqrt{\frac{10}{5 + \xi \boldsymbol{\cdot} 100}} \,, 0.55 \right) \! = \! 1 \\ & T_C \coloneqq & C_C \boldsymbol{\cdot} T_{C.s} \boldsymbol{\cdot} s \! = \! 0.467 \, s \\ & T_B \coloneqq & \frac{T_C}{3} \! = \! 0.156 \, s \end{split}$$

$$T_D\!\coloneqq\!\left(4\boldsymbol{\cdot} a_g\!+\!1.6\right)\boldsymbol{\cdot} \boldsymbol{s}\!=\!2.216~\boldsymbol{s}$$

Il periodo proprio dell'impalcato è stato valutato nel seguente modo: Periodo proprio impalcato:

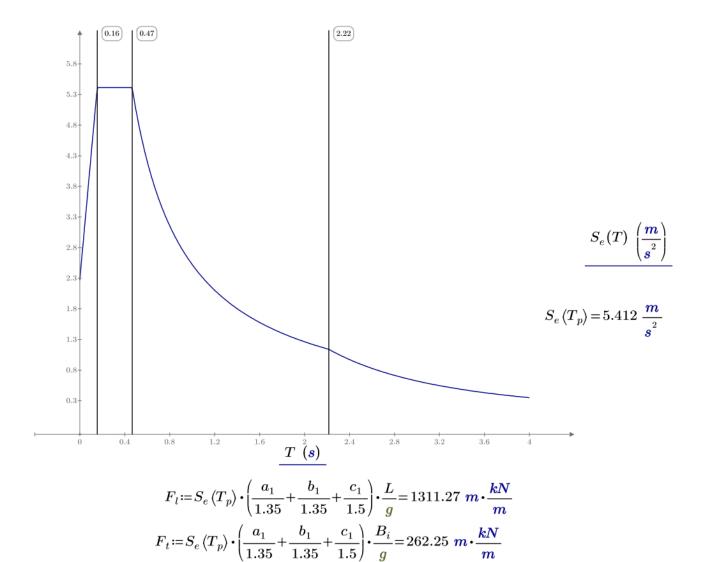
$$\begin{split} E_{cm} &\coloneqq 22000 \ \textit{MPa} \cdot \left(\frac{f_{ck} + 8 \ \textit{MPa}}{10 \ \textit{MPa}}\right)^{0.3} = 31475.8 \ \textit{MPa} \qquad n_a \coloneqq 6 \qquad A_f \coloneqq 1.13 \ \textit{cm}^2 \cdot \frac{B_i}{0.2 \ \textit{m}} = 22.6 \ \textit{cm}^2 \\ J &\coloneqq \left(\frac{\left(B_i \cdot H^3\right)}{12} + \left(n_a - 1\right) J_s \cdot n_t\right) \cdot \frac{1}{n_a} + A_s \cdot n_t \cdot \left(\frac{(H - h)}{2}\right)^2 + A_f \cdot \left(\frac{H}{2} - 3 \ \textit{cm}\right)^2 = 4870984 \ \textit{cm}^4 \\ p_p &\coloneqq p_{p1} = 163.987 \ \frac{\textit{kN}}{m} \end{split}$$

$$\begin{split} p_{p} &\coloneqq p_{p1} \!=\! 163.987 \; \frac{kN}{m} \\ \delta_{0} &\coloneqq \frac{5}{384} \! \cdot \! \frac{\left(p_{p} \! \cdot \! L^{^{4}}\right)}{E_{cm} \! \cdot \! J \! \cdot \! 10} \! = \! 22.28 \; mm \end{split}$$

freccia sotto carichi permanenti

$$\eta_0 \coloneqq \frac{17.75}{\left(\frac{\delta_0}{m} \cdot 1000\right)^{0.5}} = 3.76 \; \boldsymbol{Hz}$$

$$T_p := \frac{1}{\eta_0} = 0.266 \ s$$



LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

STUDIO GEOTECNICO ITALIANO #

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

4.2. ANALISI DELL'IMPALCATO

Lo schema di calcolo ripercorre l'esempio di calcolo riportato negli Allegati al Cap. 2.9 del Manuale di Progettazione RFI.

L'elemento strutturale resistente sono le travi in acciaio. I pesi propri, i permanenti portati e le azioni variabili invece sono affidate alle travi che ricadono all'interno della fascia di ripartizione di 4 metri considerata reagente ai fini della verifica di resistenza.

4.2.1. Calcolo delle sollecitazioni su una fascia di 4 metri

· Momento flettente in mezzeria:

- Permanenti:
$$M_{p0} := \frac{1}{8} \cdot p_{p1} \cdot \frac{L^2}{B} \cdot B_b = 8199.34 \ kN \cdot m$$

- Accidentali:

$$M_{p1} \coloneqq \frac{1}{8} \cdot (p_1 \cdot L^2) = 6046.5 \text{ kN} \cdot \text{m}$$

$$M_{p1freq.} \coloneqq \frac{1}{8} \cdot (p_{1freq.} \cdot L^2) = 3849.75 \text{ kN} \cdot \text{m}$$

- Frenatura: $M_f \coloneqq \frac{\left(Q_f \cdot \frac{h}{2}\right)}{2} = 72.45 \ \textbf{kN} \cdot \textbf{m}$

- Folla: $M_{p5} \coloneqq \frac{1}{8} \cdot \left(2 \cdot p_5 \cdot \frac{L^2}{B_i} \cdot 1.5 \cdot m \cdot 2 \right) = 843.75 \ kN \cdot m$

Taglio all'appoggio:

- Permanenti:

 $T_{p0} := \frac{1}{2} \cdot \left(\frac{p_{p1} \cdot L}{B_i} \right) \cdot B_b = 1639.87 \ kN$

- Accidentali: $T_{p2}\coloneqq\frac{1}{2}\boldsymbol{\cdot}\left\langle p_{2}\boldsymbol{\cdot}L\right\rangle =1235.4~\textbf{kN}$ $T_{p2freq.}\coloneqq\frac{1}{2}\boldsymbol{\cdot}\left\langle p_{2freq.}\boldsymbol{\cdot}L\right\rangle =789.53~\textbf{kN}$

- Frenatura: $T_f\!\coloneqq\!\frac{\left(Q_f\!\cdot\!\left(\!H_m\!+\!\frac{h}{2}\!\right)\!\right)}{L}\!=\!20.7~\textbf{\textit{kN}}$

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

- Folla:

$$T_{p5} \! := \! \frac{1}{2} \! \cdot \! \left(\! 2 \cdot p_5 \! \cdot \! \frac{L}{B_i} \! \cdot \! 1.5 \cdot \! m \cdot \! 2 \right) \! = \! 168.75 \ \textit{kN}$$

- Coppie torcenti a metro lineare di impalcato:
 - Centrifuga:

Per effetti flettenti:

$$m_{t1} \coloneqq Q_4 \cdot \langle 0.3 \cdot \boldsymbol{m} + H_m \rangle = 0 \ \boldsymbol{kN} \cdot \boldsymbol{m}$$

Per effetti taglianti:

$$m_{t2} \coloneqq Q_4 \boldsymbol{\cdot} \left(0.3 \boldsymbol{\cdot} \boldsymbol{m} + \boldsymbol{H}_m \right) = 0 \ \boldsymbol{kN} \boldsymbol{\cdot} \boldsymbol{m}$$

- Vento:

$$m_{t11} \coloneqq p_6 \cdot \left(\frac{4 \ m}{2} + \frac{H}{2} + 0.3 \cdot m\right) = 32.63 \ kN$$

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

4.2.2. Sollecitazioni sulla trave di bordo fascia

Momento flettente in mezzeria:

- Permanenti: $M_{l0}\!\coloneqq\! rac{M_{p0}}{\langle n_t
angle} \!=\! 911.04 \; extbf{kN}\!\cdot\! extbf{m}$

- Accidentali: $M_{l1}\!:=\!rac{M_{p1}}{\langle n_t
angle}\!=\!671.83\; extbf{kN}\!\cdot\! extbf{m}$

 $M_{l1freq} \coloneqq \frac{M_{p1freq.}}{\langle n_t \rangle} = 427.75 \ \textit{kN} \cdot \textit{m}$

- Frenatura: $M_f\!\coloneqq\!\frac{\left(Q_f\!\cdot\!\frac{h}{2}\right)}{2}\!\cdot\!\frac{1}{\left(n_t\right)}\!=\!8.05~\textbf{\textit{kN}}\cdot\textbf{\textit{m}}$

L'incremento di carico verticale prodotto sulla trave di bordo dalle coppie torcenti si valuta, considerando la flessione su una striscia unitaria trasversale di impalcato avente sezione Bb x h dalla quale si ottiene:

 $J \coloneqq \frac{1}{12} \cdot h \cdot B_b^3 = 3.73 \text{ m}^4 \qquad \Delta p = \left(\frac{m_t}{J}\right) \cdot d \cdot i \qquad i = 0.42 \text{ m}$

 $d' \coloneqq \text{Round}\left(\frac{B_b}{2 \cdot i}, 0.5\right) = 5$ $d \coloneqq d' \cdot i = 2.1 \text{ m}$ d è la distanza fra l'asse della trave di bordo (4m) e l'asse dell'impalcato

$$k_{\Delta} = \left(\frac{d \cdot i}{J}\right) = 0.236 \frac{1}{m^2}$$

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

- Centrifuga:

$$m_{\Delta t1} := \frac{1}{8} \cdot m_{t1} \cdot k_{\Delta} \cdot L^2 = 0 \ \mathbf{kN} \cdot \mathbf{m}$$

- Vento:

$$m_{\varDelta t11} \coloneqq \frac{1}{8} \boldsymbol{\cdot} m_{t11} \boldsymbol{\cdot} k_{\varDelta} \boldsymbol{\cdot} L^{^{2}} \boldsymbol{\cdot} \boldsymbol{m} = 385.42 \ \boldsymbol{kN} \boldsymbol{\cdot} \boldsymbol{m}$$

· Taglio all'appoggio:

$$T_{pl0} \coloneqq \frac{T_{p0}}{n_t} = 182.21 \ kN$$

$$T_{pl2} \coloneqq \frac{T_{p2}}{n_t} = 137.27 \ kN$$

$$T_{pl2freq.} \coloneqq \frac{T_{p2freq.}}{n_t} = 87.73 \text{ kN}$$

$$T_{\Delta \! f}\!\coloneqq\!\frac{T_f}{n_t}\!=\!2.3~\textbf{kN}$$

$$T_{\varDelta t2}\!\coloneqq\!\frac{1}{2}\!\boldsymbol{\cdot} m_{t2}\!\boldsymbol{\cdot} k_{\varDelta}\!\boldsymbol{\cdot} L\!=\!0 \ \mathbf{kN}$$

$$T_{\Delta t11} \coloneqq \frac{1}{2} \cdot m_{t11} \cdot k_{\Delta} \cdot L \cdot m = 77.08 \text{ kN}$$

· Sforzo normale:

$$N \coloneqq \frac{Q_f}{n_{\star}} = 46 \ \mathbf{kN}$$

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

4.2.3. Riepilogo delle sollecitazioni di progetto

Le sollecitazioni massime sull'impalcato con le quali vengono condotte le verifiche sono le seguenti

	"Azione"	"Mmax [kN*m]"	"V $\max [kN]$ "	"N [kN]"]
	"Permanenti"	911.04	182.21	0
	"Accidentali dinamizzati"	671.83	137.27	0
Carichi =	"Accidentali dinamizzati freq."	427.75	87.73	0
Caricni=	"Centrifuga"	0	0	46
	"Frenatura"	8.05	2.3	0
	$\operatorname{``Vento''}$	385.42	77.08	0
İ	"Folla"	93.75	18.75	0]

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

4.3. VERIFICHE SULL'IMPALCATO

4.3.1. Verifiche di resistenza dell'impalcato

Le verifiche di resistenza sono condotte agli stati limite ultimi, facendo riferimento alla combinazione fondamentale illustrata nel §1.8.3 della Specifica per la progettazione e l'esecuzione dei ponti ferroviari. La combinazione fondamentale utilizzata per gli SLU è:

$$\gamma_{G_1} \cdot G_1 + \gamma_{G_2} \cdot G_2 + \gamma_{Q_1} \cdot Q_{k_1} + \gamma_{Q_2} \cdot \Psi_{0_2} \cdot Q_{k_2} + \dots$$

G₁ sono i carichi permanenti;

G₂ sono i carichi permanenti non strutturali;

Qki è il valore caratteristico dell'azione variabile da traffico. Si assume per le verifiche di resistenza il gruppo di azioni 1 (vedi Tab. 5.1.IV, NTC'18) dove si applica a favore di sicurezza lo schema di carico 1 a entrambe le corsie. Risultano quindi i seguenti coefficienti di combinazione:

- 1 per i carichi variabili da traffico;
- 0.5 per il carico della folla;

Q_{k2} è l'azione del vento.

Le sollecitazioni risultano:

 $N_T = 0.6 \cdot N = 27.6 \ kN$

$$T_T \coloneqq \frac{T_{p0}}{n_t} + \frac{T_{p2}}{n_t} + T_{\Delta t2} + T_{\Delta f} + 0.6 \cdot T_{\Delta t11} + T_{p5} \cdot 0.5 = 452.4 \text{ kN}$$

$$M_T \coloneqq \frac{M_{p0}}{n_t} + \frac{M_{p1}}{n_t} + m_{\Delta t1} + M_f + 0.6 \cdot m_{\Delta t11} + M_{p5} \cdot 0.5 = 2244.05 \ \textit{kN} \cdot \textit{m}$$

Le verifiche sono condotte con il metodo delle tensioni ammissibili:

$$\sigma = \frac{M_{TOT}}{W} + \frac{N_{TOT}}{A} < \sigma_{adm} = \frac{f_{yk}}{\gamma_d} = 338.1 \text{ MPa}$$

$$\sigma = \frac{M_{TOT}}{W} + \frac{N_{TOT}}{A} < \sigma_{adm} \coloneqq \frac{f_{yk}}{\gamma_d} = 338.1 \, \textit{MPa} \qquad \qquad \tau = \frac{\left\langle T_{TOT} \cdot S \right\rangle}{\left\langle t_w \cdot J_s \right\rangle} < \qquad \tau_{adm} \coloneqq \frac{f_{yk}}{\gamma_d} \cdot \frac{1}{\sqrt{3}} = 195.2 \, \textit{MPa}$$

$$\sigma_{gr1} \coloneqq \frac{M_T}{W} + \frac{N_T}{A_s} = 306.63 \; \textit{MPa}$$

$$\boldsymbol{\tau}_{gr1} \coloneqq \frac{\left\langle \boldsymbol{T}_{T} \boldsymbol{\cdot} \boldsymbol{S} \right\rangle}{\left\langle \boldsymbol{t}_{w} \boldsymbol{\cdot} \boldsymbol{J}_{s} \right\rangle} = 43.129 \; \boldsymbol{MPa}$$

$$\sigma_{ar1} < \sigma_{adn}$$

$$au_{ar1} < au_{adm}$$

$$C1 = \text{``Verificato''}$$

$$C2 =$$
 "Verificato"

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

4.3.2. Verifiche di deformabilità

Le verifiche di deformabilità sono condotte agli stati limite di servizio con la combinazione rara delle azioni:

$$G_1 + G_2 + Q_{k1} + \Psi_{02} \cdot Q_{k2}$$

dove:

 $\mathbf{Q}_{\mathbf{k}1}$ è l'azione da traffico.

4.3.2.1. Freccia sotto i carichi accidentali dinamizzati

La freccia dovuta ai carichi accidentali dinamizzati prodotti dal treno LM71 è la seguente:

$$p = M_1 \cdot \frac{8}{L^2} = 83.4 \frac{kN}{m}$$

$$\delta \coloneqq \frac{5}{384} \cdot \frac{\left(p \cdot n_{tot} \cdot L^4\right)}{E \cdot J \cdot 10} = 2.03 \ \textit{mm} \qquad \qquad \delta_{max} \coloneqq \frac{L}{1000} = 20 \ \textit{mm}$$

$$\delta_{max} \coloneqq \frac{L}{1000} = 20 \ mm$$

4.3.2.2. Rotazione agli appoggi

$$\theta \coloneqq \frac{16}{5} \cdot \frac{\delta}{L} = 0.0003$$

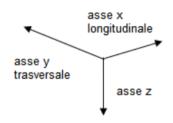
$$\theta_{max} \coloneqq \frac{8 \cdot mm}{H} = 0.01$$

C7 = "Verificato"

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

4.4. AZIONI SUGLI APPOGGI

RELAZIONE TECNICA E DI CALCOLO


Le azioni trasmesse dall'impalcato agli apparecchi d'appoggio delle spalle sono riepilogati nelle seguenti tabelle.

Nz carico verticale (<0 se verso alto) Tx carico longitudinale Ty carico trasversale

 $n_{tot}\!=\!9$ n° appoggi totali

 $n_f\!\coloneqq\!2$ n° appoggi fissi

 $n_{uni}\!\coloneqq\!2$ n° appoggi unidirezionali

	"Azione"	"Tx [kN]"	"Ty [kN]"	"Nz [kN]"]
	"Permanenti G1"	0	0	105.34
	"Permanenti G2"	0	0	26.67
	"Accidentali dinamizzati"	0	0	94.67
Azioni —	"Accidentali dinamizzati freq."	0	0	60.5
Azioni =	"Centrifuga"	0	0	0
	"Frenatura"	15.86	0	1.59
	$\rm ``Vento"$	0	40.28	51.39
	${ m ``Azione sismica''}$	655.64	65.56	0
	m ``Folla"	0	0	16.67

Mandanti

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5. SPALLE

5.1. ANALISI DEI CARICHI

5.1.1. Peso proprio della spalla e pesi permanenti portati

Si riporta di seguito il calcolo dell'azione permanente del peso proprio della spalla.

Altezza muro frontale (H ₅) =	3,10	m
Altezza plinto di fondazione ($H_{1,2,3,4}$) =	1,80	m
Altezza complessiva della spalla (H) =	5,75	m
Lunghezza longitudinale plinto di fondazione (L _{x,plinto}) =	9,30	m
Larghezza trasversale plinto di fondazione (L _{y,plinto}) =	5,60	m
Larghezza trasversale muro frontale ($L_{y,5}$) =	7,10	m
Lunghezza longitudinale muro frontale $(L_{x,5})$ =	1,35	m
Lunghezza longitudinale pulvino (Lp,x) =	0,00	m
Lunghezza trasversale pulvino (Lp,y) =	0,00	m
Spessore pulvino (Hp) =	0,00	m
Lunghezza longitudinale pannello paraghiaia $(L_{x,8}) =$	0,50	m
Larghezza trasversale pannello paraghiaia (L _{y,8}) =	5,70	m
Altezza pannello paraghiaia (H ₈) =	0,85	m
Lunghezza dente zattera a valle =	1,20	m
Lunghezza longitudinale muri andatori =	3,05	m
Lunghezza trasversale muri andatori =	0,70	m
Lunghezza longitudinale bandiera andatori =	1,25	m
Altezza bandiera muri andatori (lato corto) =	1,25	m
Altezza bandiera muri andatori (lato lungo) =	2,50	m
Interasse travi =	0,462	m

	PESO PROPRIO SPALLA - GEOMETRIA							
ELEMENTO	Descrizione	quantità	LX [m]	LY [m]	H [m]	Volume [m ³]	$\gamma [kN/m^3]$	Peso [kN]
1	PLATEA DI FONDAZIONE		9,30	5,60	1,80	93,74	25,00	2343,60
5	MURO FRONTALE		1,35	7,10	3,10	29,71	25,00	742,84
	PULVINO		0,00	0,00	0,00	0,00	25,00	0,00
	RITEGNI SISMICI LATERALI	2,00				cad. $[kN] \rightarrow$	2,00	4,00
	RITEGNI SISMICI LONGITUDINALI						25,00	0,00
	APPARECCHI D'APPOGGIO	12,00				cad. [kN] →	2,00	24,00
6	MURO ANDATORE (Y<0)		3,05	0,70	3,95	8,43	25,00	210,83
7	MURO ANDATORE (Y>0)		3,05	0,70	3,95	8,43	25,00	210,83
8	PANNELLO PARAGHIAIA		0,50	5,70	0,85	2,42	25,00	60,56
9	RITEGNO SISMICO		1,35	0,35	0,35	0,17	25,00	4,13
	BANDIERA ANDATORE (Y<0)		1,25	0,70	1,88	1,64	25,00	41,02
	BANDIERA ANDATORE (Y>0)		1,25	0,70	1,88	1,64	25,00	41,02
	MARTELLO						25,00	0,00

TOTALE [kN] 3682,83

Il peso totale della spalla.

 $G_{1,spalla} = 3682.83 \text{ kN}$

Il peso del terrapieno agente sulla zattera di fondazione è:

PP_terrapieno=19.5.7.3.05.3.95=1304.7kN

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.1.2. Spinta statica del terreno

Le spinte del terreno e del sovraccarico possono essere calcolate, in assenza di falda, come:

$$F_t = \frac{1}{2} \cdot \gamma_t \cdot k \cdot H^2 \cdot L$$
$$F_q = \Delta q \cdot k \cdot H \cdot L$$

 γ_t = peso specifico del terreno;

L = larghezza della spalla;

 $\Delta q = sovraccarico a tergo della spalla;$

k = coefficiente di spinta.

Nel caso in esame, poiché la fondazione della spalla è su pali, si considera che a monte dell'opera gli spostamenti del muro non siano tali da poter mobilitare lo stato limite del terreno. Si assume quindi come valore di k per il calcolo della spinta orizzontale il coefficiente di spinta a riposo k₀.

$$k_0 = 1 - \sin \varphi'$$

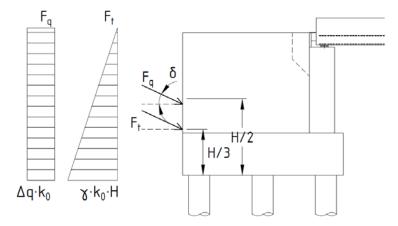
L'angolo di attrito terreno-struttura δ è valutato secondo quanto prescritto dal Manuale di Progettazione al cap. 3.8.1.3:

 $\beta = 0.0^{\circ}$ (inclinazione piano campagna a monte)

 $\varphi' = 38^{\circ}$ (angolo di attrito del rilevato ferroviario a monte)

L'angolo di attrito muro-terreno viene assunto con il valore suggerito normalmente in letteratura:

$$\delta = 2 \cdot \varphi' / 3 = 23.3^{\circ}$$


La spinta del terreno può essere scomposta quindi nella direzione verticale z e nella direzione orizzontale y come segue:

$$F_{t,y} = F_t \cdot \cos(\delta)$$

$$F_{t,z} = F_t \cdot \sin(\delta)$$

$$F_{q,y} = F_q \cdot \cos(\delta)$$

$$F_{q,z} = F_q \cdot \sin(\delta)$$

Le spinte calcolate con i criteri illustrati facendo variare i coefficienti parziali M1 e M2 sono le seguenti:

Mandanti

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

TERRENO DEL RILEVATO STRADALE			
ф'	angolo di attrito del terreno di monte	35,0 °	
tan φ'	tang. Dell'angolo di resistenza al taglio del terreno di monte	0,700	
γ _{φ'} Μ1	coeffic. Parziale di tanf' per la cond. M1	1,00	
γ _{φ'} M2	coeffic. Parziale di tanf' per la cond. M2	1,25	
ф' М1	angolo di attrito per la cond. M1	35,00 °	
ф' М2	angolo di attrito per la cond. M2	29,26 °	
γ	peso per unità di volume del terreno	$19,0 \text{ kN/m}^3$	
δ esercizio M1	angolo di attrito terra-muro per le cond. Di esercizio M1	23,3 °	
δ esercizio M2	angolo di attrito terra-muro per le cond. Di esercizio M2	19,5 °	
H terreno	altezza terreno da estradosso fondazione	5,75 m	
β	inclinazione rispetto alla verticale del paramento	0,0 °	
i	inclinazione rispetto all'orizzontale della sup. del terrapieno	0,0 °	
k_0M1	oefficiente di spinta a riposo cond. M1 k0=(1-senφ)	0,426	
k_0M2	oefficiente di spinta a riposo cond. M2 k0=(1-senφ)	0,511	
k _a M1	coeff. Di spinta attiva Coulomb cond. M1	0,2710	
k _a M2	coeff. Di spinta attiva Coulomb cond. M2	0,3434	
c'	coesione del terreno a monte	0,00 kPa	

SPINTE DEL TERRENO IN CONDIZIONE D'ESERCIZIO		cond. con k ₀	cond. con k _a	
	Spinta del terreno soprafalda in condizione M1	1794,08 kN	1011,97 kN	
SPINTE STATICHE	Componente orizzontale	1621,55 kN	914,65 kN	
TERRENO	Componente verticale	767,66 kN	433,00 kN	
RILEVATO SU	Spinta del terreno soprafalda in condizione M2	2193,87 kN	1281,09 kN	
SPALLA	Componente orizzontale	2043,49 kN	1193,27 kN	
	Componente verticale	798,27 kN	466,14 kN	

5.1.3. Sovraccarichi da traffico stradale sul rilevato a tergo della spalla

In aggiunta si considera la spinta dovuta alla presenza del sovraccarico gravante sul cuneo di spinta a monte della spalla.

Il sovraccarico variabile a monte del manufatto considerato è:

∆q=20 kPa

Si riportano nel seguito le spinte da sovraccarico a monte della spalla.

		Δq
		20,0 kPa
		cond. con k_0
SPINTE SOVRACCARICO SU SPALLA	Spinta del terreno soprafalda in condizione M1	274,62 kN
	Componente orizzontale	252,16 kN
	Componente verticale	108,77 kN
	Spinta del terreno soprafalda in condizione M2	329,27 kN
	Componente orizzontale	310,37 kN
	Componente verticale	109,93 kN

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.1.4. Azioni orizzontali da traffico (Frenatura/Avviamento)

L'azione orizzontale da frenatura e avviamento dei modelli di carico è stata valutata a partire dai carichi più gravosi indicati in NTC18 (§5.1.3.5) per lo schema di carico 1:

$$Fren/Avv$$
 su spalla = $368kN$

5.1.5. Azione sismica

L'azione sismica è stata definita sulla base del comune di appartenenza del sito di realizzazione dell'opera (Altopascio, LU).

In accordo al la Tabella 2.5.1.1.1-1 del Manuale di Progettazione, si considera la seguente Vita Nominale:

$$V_N \ge 50$$
 anni

Dalla Tabella 2.5.1.1.2-1 del Manuale, si ricava la classe d'uso dell'opera in esame, la C III, per la quale il coefficiente d'uso risulta:

$$C_{\rm U} = 1.5$$

Ne consegue un periodo di riferimento per la valutazione delle azioni sismiche sulla struttura:

$$P_{VR} = 10\%$$

$$T_R = 712 \ anni$$

Per il sottosuolo in questione si ha: Categoria di sottosuolo: C Condizione topografica: T1

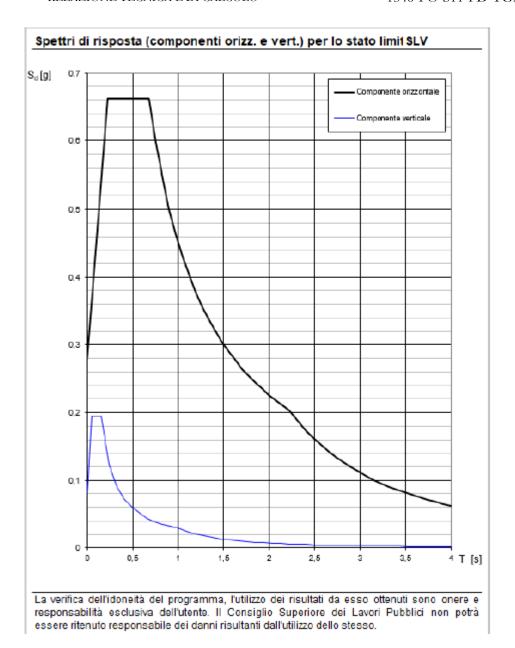
Il periodo di ritorno per lo Stato Limite di salvaguardia della vita (SLV) è:

$$V_R = V_N \cdot C_U \ge 75 \ anni$$

Infine, si considera un fattore di struttura come suggerito da NTC'18 al paragrafo 7.9.5.6.2 sulla base del collegamento con l'impalcato. Nel caso in esame si analizza la spalla con apparecchio di appoggio fisso. Si ha quindi:

Fattore di struttura: 1

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri_NTCver.1.0.3.



LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

I parametri per la determinazione dei punti dello spettro di risposta orizzontale:

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Parametri indipendenti

· withing all illustrations				
SLV				
0,154 g				
2,389				
0,298 s				
1,800				
2,291				
1,000				
1,000				

Parametri dipendenti

S	1,800
η	1,000
T _B	0,227 s
T _c	0,682 s
T _D	2,215 s

I parametri per la determinazione dei punti dello spettro di risposta verticale sono:

Parametri indipendenti

STATO LIMITE	SLV			
a _{gv}	0,081 g			
Ss	1,000			
S _T	1,000			
q	1,000			
T _B	0,050 s			
T _C	0,150 s			
T _D	1,000 s			

Parametri dipendenti

F _v	1,265
S	1,000
η	1,000

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.1.6. Sovraspinta sismica del terreno

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. Essendo la spalla rigida e completamente vincolata, nel terreno non si raggiungono le condizioni di equilibrio limite. Si applica quindi la teoria di Wood, secondo la quale la sovraspinta sismica è data da una distribuzione di sovrapressioni costante con la profondità.

La risultante è quindi applicata a metà altezza della spalla (H/2).

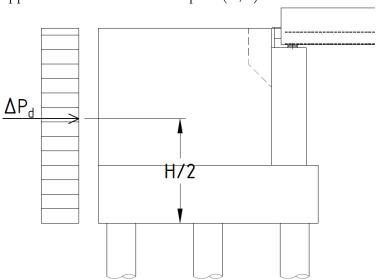


Figura 5-1Schema per il calcolo degli effetti della sovraspinta sismica (teoria di Wood)

Le formule impiegate sono le seguenti:

Per il valore dell'incremento di spinta in condizioni sismiche si ha:

$$\Delta P_d = \left(a_g/g\right) \cdot S \cdot \gamma_d \cdot H^2$$

In cui:

 $a_g/g =$ accelerazione orizzontale massima attesa su sito di riferimento rigido;

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche del sito:

$$S = S_S \cdot S_T = 1.491$$

Per l'opera in esame risulta:

$$a_g/g = 0.154$$

Si riportano di seguito i coefficienti sismici orizzontale e verticale assunti per il calcolo della sovraspinta sismica del sito indagato suggeriti dal Manuale di Progettazione RFI:

$$k_h = \beta_m \cdot \frac{a_{max}}{g} = 0.2646$$

 $\beta_m = 1$ coefficiente di riduzione dell'accelerazione massima (per opere non in grado di subire spostamenti).

$$a_{max} = S \cdot a_q$$

 a_{max} = accelerazione massima attesa al sito;

Mentre per il coefficiente sismico verticale risulta:

Mandataria

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

 $k_v=\pm 0.5\cdot k_h=\pm 0.1323$ Nella tabella seguente vengono riassunti i parametri assunti per l'analisi sismica e i valori di sovraspinta calcolati.

	SPINTE DEL TERRENO IN CONDIZIONI SISMICHE				
	categoria del sottosuolo		D		
F_0	fattore per l'amplif. Spettr maa. Su sito di rif. Rigido		2,3890		
a_{g}	acc orizz mass attesa su sito di rif rigido		0,147 g		
S_S	coeff per l'effetto dell'amplif stratigrafica		1,8		
S_{T}	coeff per l'effetto dell'amplif topografica		1		
S	fattore della categoria del suolo		1,8		
β_{m}	coeff di riduzione dell'acc max attesa al sito		1		
a _{max}	acc orizz massima attesa al sito		0,2646 g		
	coeff maggiorativo		1		
k_h	coeff sismico orizzontale		0,2646		
k_{v}	coeff sismico verticale	±	0,1323		
ψ	inclinazione rispetto all'orizz del par del muro		0 •		
ε	inclinazione rispetto all'orizz della sup del terrapieno		0 °		
θ	angolo sismico terreno asciutto	(+)	13,2 °	(-)	17,0 °
θ	angolo sismico terreno sommerso (alta permeabilità)	(+)	21,7 °	(-)	28,0 °

La sovraspinta sismica totale è quindi:

 $\Delta P_d = 1180 \ kN$

Mandanti

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.1.7. Forze inerziali dovute al sisma

In fase sismica si devono considerare le azioni orizzontali e verticali agenti sulla spalla dovute all'inerzia delle parti in calcestruzzo del terrapieno compreso tra i muri andatori. Le risultanti orizzontali e verticali sono rispettivamente pari a:

$$F_h = k_h \cdot W$$
$$F_v = k_v \cdot W$$

I coefficienti k_b e k_v sono come esposto al paragrafo precedente.

SPIN'TE INERZIALI		
$F_{h,1} = k_h * W_1$	inerzia orizzontale platea	513,43 kN
$F_{v,1} = k_v * W_1$	inerzia verticale platea	256,71 kN
$F_{h,5} = k_h * W_5$	inerzia orizzontale Muro frontale	196,55 kN
$F_{v,5} = k_v * W_5$	inerzia verticale muro frontale	98,28 kN
$F_{h,6} = k_h * W_6$	inerzia orizzontale Muro andatore (y<0)	55,79 kN
$F_{v,6} = kv*W_6$	inerzia verticale Muro andatore (y<0)	27,89 kN
$F_{h,7} = k_h * W_7$	inerzia orizzontale Muro andatore (y>0)	55,79 kN
$F_{v,7} = k_v * W_7$	inerzia verticale Muro andatore (y>0)	27,89 kN
$F_{h,terr} = k_h * W_{terr}$	inerzia orizzontale bandiere andatori	21,71 kN
$F_{v,terr} = k_v * W_{terr}$	inerzia verticale bandiere andatori	10,85 kN
$F_{h,8} = k_h * W_8$	inerzia orizzontale muro paraghiaia	16,02 kN
$F_{v,8} = k_v * W_8$	inerzia verticale muro paraghiaia	8,01 kN
$F_{h,terr} = k_h^* W_{terr}$	inerzia orizzontale terrapieno sopra platea	345,24 kN
$F_{v,terr} = k_v * W_{terr}$	inerzia verticale terrapieno sopra platea	172,62 kN

5.1.8. Carichi sui marciapiedi

Il carico da folla compatta, agente con intensità nominale, comprensiva degli effetti dinamici viene considerato pari a:

$$Q_{folla} = 5 \ kN/m^2$$

Il valore di combinazione è invece 2.5 kN/m²

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.1.9. Azioni da impalcato

Le reazioni agli appoggi sulla spalla con appoggi fissi sono indicati al paragrafo 4.4.

5.1.10. Resistenza parassite sui vincoli

Secondo quanto indicato nella Parte II, Sezione 2 del Manuale di Progettazione RFI al §2.5.1.6.3, la resistenza parassita dei vincoli in corrispondenza degli apparecchi di appoggi delle spalle, per viadotti a travi semplicemente appoggiate è valutata nel modo seguente:

$$F_a = f \cdot (V_g + V_q)$$

Dove:

f = coefficiente d'attrito assunto pari a 0.03;

 V_g = Reazione verticale massima associata ai carichi permanenti;

 V_q = Reazione verticale massima associata ai carichi mobili dinamizzati.

5.1.11. Azioni sul paraghiaie – Azione verticale da traffico ferroviario

Il paraghiaie, oltre alle note azioni provocate dalla spinta orizzontale del terreno e del sovraccarico, può essere sollecitato localmente dai carichi concentrati verticali e orizzontali trasmessi dagli assi del convoglio.

Spinta statica del terreno (G1)	
S _{terr}	2,9 kN/m
bS_{terr}	0,6 m
m _{terr}	1,7 kNm/m

Si considera un carico verticale N (pari al carico di un asse), distribuito su un'impronta di dimensioni *a x b* applicata sul bordo del paraghiaia come da figura seguente.

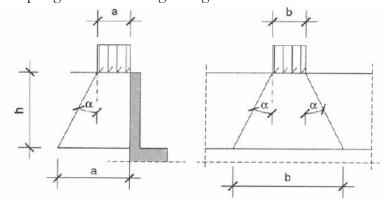


Figura 5-2-Distribuzione del carico applicato al bordo del paraghiaia

La distribuzione delle pressioni sul paraghiaie e i valori di spinta e momento provocati sono ricavati mediante i metodi presenti in letteratura (Cavalieri):

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Spinta sovraccarico dell'asse (Qasse)		
Carico asse (N)	300,0	kN
Area di impronta del carico		
a	0,4	m
b	2,000	m
Inclinazione diffusione del carico (tg)	0,25	(1:4)
S_N	231,35	kN
M_N	108,15	kNm
b _{eff} (larghezza collaborante del muro)	3,0625	m
s_N	76,50	kN/m
m_N	35,86	kNm/m

L'azione di frenatura è considerata a favore di sicurezza trasmessa dal modello di carico in corrispondenza del muro come indicato dalla Circolare di NTC'08.

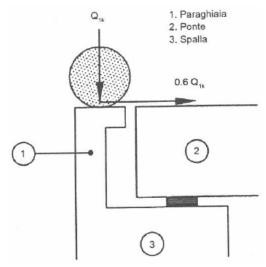


Figura 5-3 Carichi da traffico su paraghiaie DM. 14gennaio 2008

Frenatura (Q _f)	
S _f (60%N)	180 kN
$ m M_{f}$	153 kNm
$b_{ m eff}$	3,7_m
S_{f}	48,65 kN/m
$m_{ m f}$	41,35 kNm/m

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

[2.5.1]

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.2. COMBINAZIONI DEI CARICHI E CRITERI DI VERIFICA

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando le combinazioni di carico definite in ottemperanza alle NTC08, secondo quanto riportato nei paragrafi 2.5.3, 5.2.3. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

5.2.1. Combinazioni delle azioni

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU): $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili: $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.3]
- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.4]
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$ [2.5.5]
- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

 $G_1 + G_2 + \sum_i \psi_{2j} Q_{kj}$ [2.5.7]

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU(1)	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	Y _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Ye1	0,90 1,00 ⁽³⁾	1,00 1,00(4)	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Ye2, Ye3, Ye4	0,00 1,20	0,00 1,20	0,00 1,00

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Mandanti

⁽a) Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽ⁱ⁾1,30 per instabilità in strutture con precompressione esterna

^{(6) 1,20} per effetti locali

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

 $\textbf{Tab. 5.1.VI -} \textbf{Coefficienti} \ \psi \ per \ le \ azioni \ variabili \ per \ ponti \ stradali \ e \ pedonali$

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente Ψ ₂ (valori quasi permanenti)	
	Schema 1 (carichi tandem)	0,75	0,75	0,0	
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0	
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0	
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0	
	2	0,0	0,0	0,0	
	3	0,0	0,0		
	4 (folla)		0,75	0,0	
	5	0,0	0,0	0,0	
	a ponte scarico SLU e SLE	0,6	0,2	0,0	
Vento	in esecuzione	0,8	0,0	0,0	
	a ponte carico SLU e SLE	0,6	0,0	0,0	
Neve	SLU e SLE	0,0	0,0	0,0	
	in esecuzione	0,8	0,6	0,5	
Temperatura	SLU e SLE	0,6	0,6	0,5	

Le azioni dell'impalcato vengono combinate considerando i gruppi di combinazione dei carichi dovuti al traffico stradale indicati in tabella 5.1.IV delle NTC08.

Tab. 5.1.IV – Valori caratteristici delle azioni dovute al traffico

		Carich	i sulla superfic	e carrabile		Carichi su marciapiedi e piste ciclabili non sormontabili
		Carichi verticali	i	Carichi	orixxontali	Carichi verticali
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Sche- ma di carico 5)	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico					Schema di carico 5 con valore di combinazione 2,5KN/m²
2a	Valore fre- quente			Valore carat- teristico		
2b	Valore fre- quente				Valore caratteri- stico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m²			Schema di carico 5 con valore caratteristico 5,0KN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale				

(*) Ponti pedonali

(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

(***) Da considerare solo se si considerano veicoli speciali

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Le verifiche della spalla sono state effettuate secondo l'Approccio 1 definito nelle NTC'18, che prevede differenti coefficienti di sicurezza amplificativi per le azioni (A) e riduttivi per i materiali (M) a seconda del tipo di verifica che si effettua.

Per le verifiche strutturali (resistenza muro di testata, muro paraghiaia, plinto di fondazione, verifiche strutturali dei pali) si è utilizzata la combinazione di coefficienti:

Combinazione 1: A1 + M1 + R1

Per quanto riguarda le verifiche geotecniche è stata utilizzata la combinazione di coefficienti seguente:

Combinazione 2: A2 + M2 + R2

Nel calcolo delle spinte statiche in esercizio dovute al terreno ed al sovraccarico accidentale sono stati utilizzati parametri del terreno M1 per le combinazioni STR, e parametri del terreno M2 per le combinazioni GEO.

In presenza di azione sismica le spinte del terreno (calcolate in condizioni di riposo) e le sovraspinte sismiche (calcolate con la teoria di Wood), sono state calcolate con parametri del terreno ridotti M1, per le combinazioni SLV-STR, M2 per le combinazioni SLV-GEO.

I coefficienti parziali per i parametri geotecnici sono riportati nella tabella seguente:

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$tan{\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	Ye	1,0	1,25
Resistenza non drenata	c _{uk}	Υαι	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Le spinte sono calcolate a partire dai parametri M1. Per tenere in considerazione dei diversi parametri M2 vengono applicati dei coefficienti c pari a:

$$c = \frac{k_{M2}}{k_{M1}}$$

(M1,k0)	k0_M1	k0_M2	ka_M1	ka_M2
Spinta statica terreno	1,00	1,20	0,64	0,76
Spinta sovraccarico	1,00	1,20	0,64	0,76
Spinta sismica	1,00	1,20	0,64	0,76

Le tabelle seguenti spiegano le combinazioni di carico considerate e i coefficienti applicati per ciascun caso di carico:

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

NOME COMBO	Stato Limite	Cond. terreno Statiche/Attive	Combinazione coeff. Parziali (A1+M1)/(A2+M2	Gruppo di carico	Schema di carico	Azione massima	DIREZIONE SISMA	v
01-SLU-STR	SLU	k0	A1+M1	gr1	1+5	VERTICALE		
02-SLU-STR	SLU	k0	A1+M1	gr2a	1	LONGITUDINALE		
03-SLU-STR	SLU	k0	A1+M1	gr2b	1	TRASVERSALE		
04-SLU-STR	SLU	k0	A1+M1	gr4	5	VERTICALE		
05-SLU-STR-VENTO	SLU	k0	A1+M1	gr2b	1	VENTO		
06-SLU-GEO	SLU	k0	A2+M2	gr1	1+5	VERTICALE		
07-SLU-GEO	SLU	k0	A2+M2	gr1	1	LONGITUDINALE		
08-SLU-GEO	SLU	k0	A2+M2	gr3	1	TRASVERSALE		
09-SLU-GEO	SLU	k0	A2+M2	gr3	5	VERTICALE		
10-SLU-GEO-ka	SLU	ka	A2+M2	gr1	1+5	VERTICALE		
11-SLU-GEO-ka	SLU	ka	A2+M2	gr1	1	LONGITUDINALE		
12-SLU-GEO-ka	SLU	ka	A2+M2	gr3	1	TRASVERSALE		
13-SLU-GEO-ka	SLU	ka	A2+M2	gr3	5	VERTICALE		
14-SLV-STR	SLV	k0	A1+M1	-	-	LONGITUDINALE	X	Ex+0,3Ey+0,3Ez
15-SLV-STR	SLV	k0	A1+M1	-	-	LONGITUDINALE	-X	-Ex+0,3Ey+0,3Ez
16-SLV-STR	SLV	k0	A1+M1	-	-	TRASVERSALE	Y	Ey+0,3Ex+0,3Ez
17-SLV-STR	SLV	k0	A1+M1	-	-	TRASVERSALE	-Y	-Ey+0,3Ex+0,3Ez
18-SLV-STR	SLV	k0	A1+M1	-	-	VERTICALE	Z	Ez+0,3Ex+0,3Ey
19-SLV-STR	SLV	k0	A1+M1	-	-	VERTICALE	-Z	-Ez+0,3Ex+0,3Ey
20-SLV-GEO	SLV	k0	A2+M2	-	1	LONGITUDINALE	X	Ex+0,3Ey+0,3Ez
21-SLV-GEO	SLV	k0	A2+M2	-	1	LONGITUDINALE	-X	-Ex+0,3Ey+0,3Ez
22-SLV-GEO	SLV	k0	A2+M2	-	П	TRASVERSALE	Y	Ey+0,3Ex+0,3Ez
23-SLV-GEO	SLV	k0	A2+M2	-	-	TRASVERSALE	-Y	-Ey+0,3Ex+0,3Ez
24-SLV-GEO	SLV	k0	A2+M2	-	=	VERTICALE	Z	Ez+0,3Ex+0,3Ey
25-SLV-GEO	SLV	k0	A2+M2	-	=	VERTICALE	-Z	-Ez+0,3Ex+0,3Ey
26-SLV-GEO-ka	SLV	ka	A2+M2	-	=	LONGITUDINALE	X	Ex+0,3Ey+0,3Ez
27-SLV-GEO-ka	SLV	ka	A2+M2	-	=	LONGITUDINALE	-X	-Ex+0,3Ey+0,3Ez
28-SLV-GEO-ka	SLV	ka	A2+M2	-	-	TRASVERSALE	Y	Ey+0,3Ex+0,3Ez
29-SLV-GEO-ka	SLV	ka	A2+M2	-	1	TRASVERSALE	-Y	-Ey+0,3Ex+0,3Ez
30-SLV-GEO-ka	SLV	ka	A2+M2	-	1	VERTICALE	Z	Ez+0,3Ex+0,3Ey
31-SLV-GEO-ka	SLV	ka	A2+M2	-	1	VERTICALE	-Z	-Ez+0,3Ex+0,3Ey
32-SLE-RARA	SLE-RARA	k0	ī	gr1	1	VERTICALE		
33-SLE-RARA	SLE-RARA	k0	ī	gr1	1+5	VERTICALE		
34-SLE-FREQ	SLE-FREQ	k0	-	gr1	1	VERTICALE		
35-SLE-FREQ	SLE-FREQ	k0	-	gr1	1+5	VERTICALE		
36-SLE-QPERM	SLE-QPERM	k0	ī	gr1	1	VERTICALE		

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

		01-SLU- STR	02-SLU- STR	03-SLU- STR	04-SLU- STR	05-SLU- STR- VENTO	06-SLU- GEO	07-SLU- GEO	08-SLU- GEO	09-SLU- GEO	10-SLU- GEO-ka	11-SLU- GEO-ka	12-SLU- GEO-ka	13-SLU- GEO-ka
G1_spalla (Peso proprio)		1,35	1,35	1,35	1,35	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
PP_Terrapieno		1,35	1,35	1,35	1,35	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Qv_testa_spalla	- C - 11 -	1,35	1,01	1,01	0,34	0,40	1,15	0,86	0,86	0,29	1,15	0,86	0,86	0,29
Frenatura_su_spalla_		-	1,35	-	-	-	-	1,15	-	-	-	1,15	-	-
SISMA_Z_terrapieno_su_platea	Splla	-	-	-	-	-	-	-	-	-	-	-	-	-
SISMA_X		-	-	-	-	-	-	-	-	-	-	-	-	-
SISMA_Y]	-	-	-	-	-	-	-	-	-	-	-	-	-
SISMA_Z		-	-	-	-	-	-	-	-	-	-	-	-	-
Spinta Statica Terreno	Spinte sul	1,35	1,35	1,35	1,35	1,35	1,22	1,22	1,22	1,22	0,69	0,69	0,69	0,69
Spinta_Sovraccarico	rilevato a	1,35	1,01	1,01	0,34	0,40	1,40	1,05	1,05	0,29	0,79	0,60	0,60	0,29
Spinta_sismica	tergo	-	-	-	-	-	-	-	-	-	-	-	-	-
G1_impalcto		1,35	1,35	1,35	1,35	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
G2_impalcato		1,50	1,50	1,50	1,50	1,50	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30
Q_mob_k		1,35	-	-	-	-	1,15	-	-	-	1,15	-	-	-
Q_mob_freq		-	1,35	1,35	-	1,01	-	1,15	1,15	-	-	1,15	1,15	-
Fren/Avv		-	1,35	-	-	-	-	1,15	-	-	-	1,15	-	-
F_œntrifuga	Impalcato	-	-	1,35	-	1,01	-	-	1,15	-	-	-	1,15	-
Q_folla		0,68	-	-	1,35	ı	0,58	-	-	1,15	0,58	-	-	1,15
Vento_Impalcato		0,90	0,90	0,90	0,90	1,50	0,78	0,78	0,78	0,78	0,78	0,78	0,78	0,78
SISMA_Impalcato_X		-	-	-	-	-	1	-	-	-	-	-	-	-
SISMA_Impalcato_Y		-	-	-	-	-	1	-	-	-	-	-	-	-
SISMA_Impalcato_Z		=	-	=	=	-	=	=	-	=	=	-	=	=

Tabella 5-1Coefficienti delle azioni per le combinazioni allo SLU

Mandataria

Mandanti

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

RELAZIONE TECNICA E DI CALCOLO

		14-SLV-	15-SLV-	16-SLV-	17-SLV-	18-SLV-	19-SLV-	20-SLV-	21-SLV-	22-SLV-	23-SLV-	24-SLV-	25-SLV-	26-SLV-	27-SLV-	28-SLV-	29-SLV-	30-SLV-	31-SLV-
		STR	STR	STR	STR	STR	STR	GEO	GEO	GEO	GEO	GEO	GEO	GEO-ka	GEO-ka	GEO-ka	GEO-ka	GEO-ka	GEO-ka
G1_spalla (Peso proprio)		1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
PP_Terrapieno		1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Qv_testa_spalla		-	-	-	-	-	-	-	-	-	=	-	-	-	-	=	-	=	-
Frenatura_su_spalla_	Splla	-	-	-	-	-	-	-	-	-	=	-	-	-	-	-	-	=	-
SISMA_Z_terrapieno_su_platea	эрна	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00
SISMA_X		1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30
SISMA_Y		0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30
SISMA_Z		0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00
Spinta Statica Terreno	Spinte sul	1,00	1,00	1,00	1,00	1,00	1,00	1,22	1,22	1,22	1,22	1,22	1,22	0,69	0,69	0,69	0,69	0,69	0,69
Spinta_Sovraccarico	rilevato a	=	-	-	-	-	=	-	=	=	-	=	=	=	=	=	-	=	=
Spinta_sismica	tergo	1,00	1,00	1,00	1,00	1,00	1,00	1,22	1,22	1,22	1,22	1,22	1,22	0,69	0,69	0,69	0,69	0,69	0,69
G1_impalcto		1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
G2_impalcato		1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Q_mob_k		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Q_mob_freq		-	-	-	1	ī	-	-	-	-	-	-	-	-	-	-	-	-	-
Fren/Avv		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F_œntrifuga	Impalcato	=	-	=	-	-	=	-	-	=	-	-	-	-	-	-	=	=	=
Q_folla		=	-	=	-	-	=	-	-	-	-	-	-	-	=	-	-	=	-
Vento_Impalcato		=	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	=	-
SISMA_Impalcato_X		1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30
SISMA_Impalcato_Y		0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30
SISMA_Impalcato_Z		0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00	0,30	0,30	0,30	0,30	1,00	-1,00

Tabella 5-2Coefficienti delle azioni per le combinazioni allo SLV

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001


		1	1	ı	ı	1
		32-SLE-	33-SLE-	34-SLE-	35-SLE-	36-SLE-
		RARA	RARA	FREQ	FREQ	QPERM
G1_spalla (Peso proprio)		1,00	1,00	1,00	1,00	1,00
PP_Terrapieno		1,00	1,00	1,00	1,00	1,00
Qv_testa_spalla		1,00	1,00	0,40	0,40	-
Frenatura_su_spalla_	Splla	-	-	-	-	-
SISMA_Z_terrapieno_su_platea	Брпа	-	-	-	-	-
SISMA_X		-	-	-	-	-
SISMA_Y		-	-	-	-	-
SISMA_Z		-	-	-	-	-
Spinta Statica Terreno	Spinte sul	1,00	1,00	1,00	1,00	1,00
Spinta_Sovraccarico	rilevato a	1,00	1,00	0,40	0,40	-
Spinta_sismica	tergo	-	-	-	-	-
G1_impalcto		1,00	1,00	1,00	1,00	1,00
G2_impalcato		1,00	1,00	1,00	1,00	1,00
Q_mob_k		1,00	1,00	-	-	-
Q_mob_freq		-	-	1,00	1,00	-
Fren/Avv		-	-	-	-	-
F_œntrifuga	Impalcato	-	-	-	-	-
Q_folla		0,50	0,50	0,38	0,38	-
Vento_Impalcato		0,60	1,00	-		-
SISMA_Impalcato_X		-	-	-	-	-
SISMA_Impalcato_Y		-	-	-	-	-
SISMA_Impalcato_Z		-	-	-	-	-

Tabella 5-3 Coefficienti delle azioni per le combinazioni allo SLE

STUDIO GEOTECNICO ITALIANO 11

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.3. MODELLO DI CALCOLO

Le sollecitazioni di progetto vengono determinate mediante lo sviluppo di un modello agli elementi finiti elaborato con il codice di calcolo MIDAS CIVIL. Il modello si compone di 1099 nodi, 1037 elementi Area di tipo Shell-Thick di spessore 1.8m, 1.6 m e 1 m rispettivamente per platea, muro frontale e muri andatori. Il calcestruzzo è di classe C30/37.

Sul muro frontale, all'altezza del piano degli appoggi, vengono inseriti 12 elementi Beam di massa nulla ed elevata rigidezza flessionale. Alle estremità di tali frame vengono applicate le forze scaricate dall'impalcato. La lunghezza di tali elementi è pari alla distanza tra l'asse dell'appoggio e il baricentro del muro frontale al fine di trasmettere alla struttura il momento dovuto all'eccentricità di tali forze.

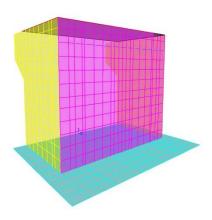


Figura 5-4Vista 3D del modello agli elementi finiti della spalla

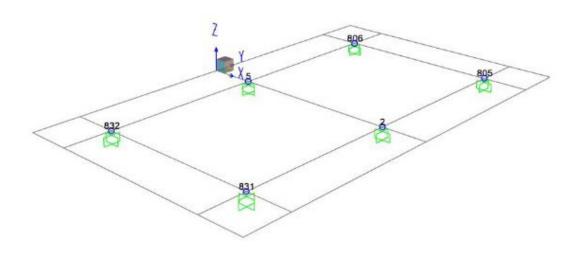


Figura 5-5- Vista dei vincoli in pianta

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Sui punti rappresentanti i pali alla base della platea si inseriscono delle molle nelle tre direzioni X, Y, Z, che modellano l'interazione palo-terreno.

Le costanti di reazione delle molle sono state valutate con dei metodi disponibili in letteratura e vengono riassunte nel prospetto seguente.

Kz	36.300	kN/m
Kx,y	168.900	kN/m
Krot.(x,y)	3.630.000	kN/rad.

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Si riportano di seguito alcune immagini del modello ed alcune distribuzioni di sollecitazioni flessionali e taglianti allo stato limite ultimo sulla platea di fondazione e sulle pareti.

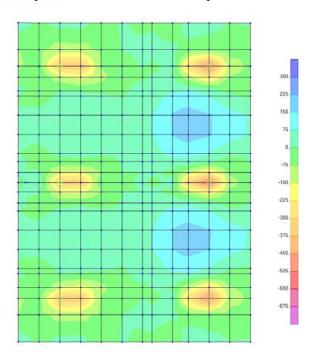


Figura 5-6- Momento Flettente 2-2 longitudinale in Combo SLU-STR-01



Figura 5-7 Taglio 1-3 longitudinale in combo SLU-STR-01

Mandataria

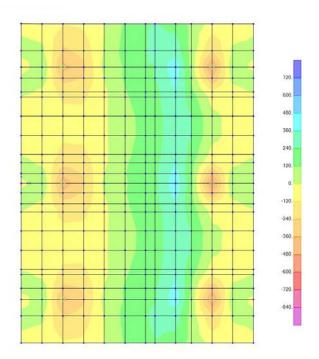


Figura 5-8- Momento flettente M1-1 trasversale in combo SLU-STR-01

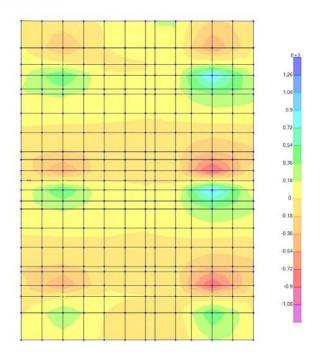


Figura 5-9- Taglio V2-3 trasversale in combo SLU-STR-01

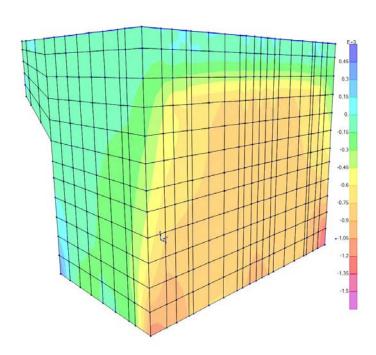


Figura 5-10 Sforzo normale sui muri F2-2 (N) in combo 01-SLU-STR

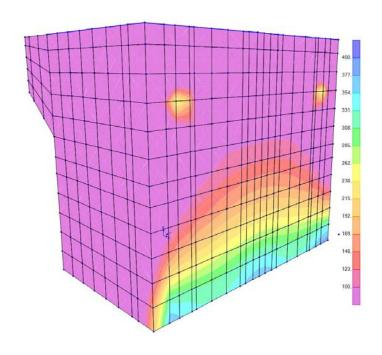


Figura 5-11- Taglio V2-3 (longitudinale) in combo 14-SLV-STR

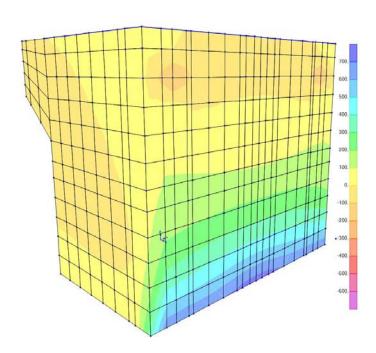


Figura 5-12- Momento M2-2 (ribaltante) in combo 14-SLV-STR

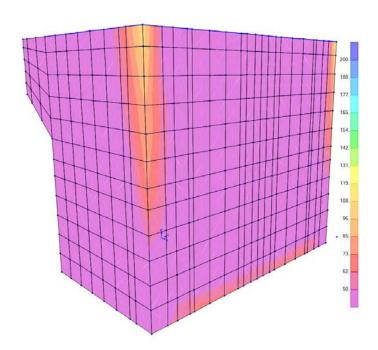


Figura 5-13 Momento M1-1 (trasversale) in combo 01-SLU-STR

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.4. SOLLECITAZIONI DI PROGETTO SULLA PLATEA DI FONDAZIONE

Vengono riportate le massime reazioni ottenute sui pali utili per le verifiche geotecniche secondo l'Approccio 2 (A1+M1+R3) utili ai fini delle verifiche sui pali.

11	,			1				
Sollecitazioni di progetto - SLU-STR								
	COMBINAZIONE	PALO	N [kN]	Vx [kN]	Vy [kN]	My (long.) [kN*m]	Mx (trasv.) [kN*m]	Mz [kN*m]
N max (COMPR)	01-SLU-STR	2	1843,5	-290,2	-14,0	-993,9	57,1	0,0
N max (TRAZ)	-	-	-	-	-	-	-	-
Vx max (long)	02-SLU-STR	831	1718,3	-384,1	-12,4	-1421,4	233,3	0,0
My max (long)	02-SLU-STR	806	1661,1	-376,1	-10,9	-1605,8	-75,3	0,0
Mx max (trasv)	05-SLU-STR-VENTO	831	1694,9	-246,5	-21,8	-844,2	244,7	0,0

	Sollecitazioni di progetto - SLV-STR							
	COMBINAZIONE	PALO	N [kN]	Vx [kN]	Vy [kN]	My (long.) [kN*m]	Mx (trasv.) [kN*m]	Mz [kN*m]
N max (COMPR)	14-SLV-STR	2	1040,9	-748,4	-19,1	-2619,3	78,1	0,0
N max (TRAZ)	-	-	-	-	-	-	-	-
Vx max (long)	14-SLV-STR	832	1795,2	-753,0	-13,6	-2735,6	193,2	0,0
My max (long)	14-SLV-STR	806	932,4	-742,0	-13,7	-2740,3	-51,0	0,0
Mx max (trasv)	16-SLV-STR	831	1005,9	-540,0	-62,4	-1528,1	372,7	0,0

	Sollecitazioni di progetto - SLE								
	COMBINAZIONE	PALO	N [kN]	Vx [kN]	Vy [kN]	My (long.) [kN*m]	Mx (trasv.) [kN*m]	Mz [kN*m]	
N max (COMPR)	33-SLE-RARA	2	1399,8	-215,0	-15,5	-770,2	63,4	0,0	
N max (TRAZ)	-	-	-	-	-	-	-	-	
Vx max (long)	33-SLE-RARA	831	1394,5	-218,8	-14,3	-741,4	189,0	0,0	
My max (long)	33-SLE-RARA	806	1366,5	-209,8	-11,7	-874,4	-33,7	0,0	
Mx max (trasv)	33-SLE-RARA	831	1394,5	-218,8	-14,3	-741,4	189,0	0,0	

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5. VERIFICHE STRUTTURALI

Le verifiche strutturali vengono effettuate a mezzo di SectionCut, definite precedentemente all'interno del modello di calcolo. Si riportano di seguito la posizione delle Section Cut considerate per ciascuna combinazione di carico.

TABLE: Section Cuts 1 - General					
CutName	GlobalX	GlobalY	В	Н	Color
Text	m 💌	m 💌	m 💌	m 💌	<u> </u>
SCUT_PL_LONG_1	4,60	-2,69	1	1,8	
SCUT_PL_LONG_2	4,60	0,00	1	1,8	
SCUT_PL_LONG_3	4,60	2,69	1	1,8	
SCUT_PL_LONG_4	1,00	-2,69	1	1,8	
SCUT_PL_TRASV_1	4,60	-2,80	1	1,8	
SCUT_PL_TRASV_2	4,60	0,00	1	1,8	
SCUT_PL_TRASV_3	4,60	2,80	1	1,8	
SCUT_PL_TRASV_4	1,00	-2,80	1	1,8	
SCUT_PL_TRASV_5	1,00	0,00	1	1,8	

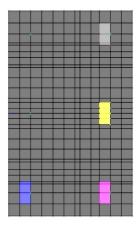


Figura 5-14Section cut sulla platea per le sollecitazioni longitudinali

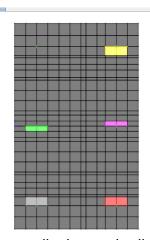


Figura 5-15Section cut sulla platea per le sollecitazioni trasversali

Mandataria

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

TABLE: Section Cuts 1 - General							
CutName		GlobalX	GlobalY	В	Н	Color	
Text	Ţ	m 💌	m 💌	m 💌	m 💌	*	
SCUT_FRONT_1		3,72	-2,69	1	1,35		
SCUT_FRONT_2		3,73	2,69	1	1,35		
SCUT_FRONT_3		3,72	-3,20	1	1,35		
SCUT_FRONT_4		3,73	3,20	1	1,35		

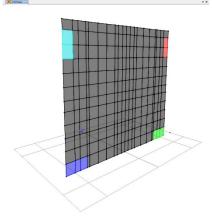


Figura 5-16 Section cut sul muro frontale

TABLE: Section Cuts 1 - General							
CutName	GlobalX	GlobalY	В	Н	Color		
Text	m 💌	m 💌	m ▼	m 💌	<u> </u>		
SCUT_AND_Y<0_1	3,11	-3,20	1,2	0,7			
SCUT_AND_Y<0_2	0,50	-3,20	1	0,7			
SCUT_AND_Y<0_3	3,72	-3,20	1	1			
SCUT_AND_Y>0_1	3,11	3,20	1,2	0,7			
SCUT_AND_Y>0_2	0,50	3,20	1	0,7			
SCUT_AND_Y>0_3	3,73	3,20	1	1			

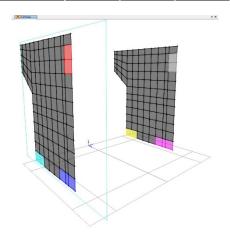
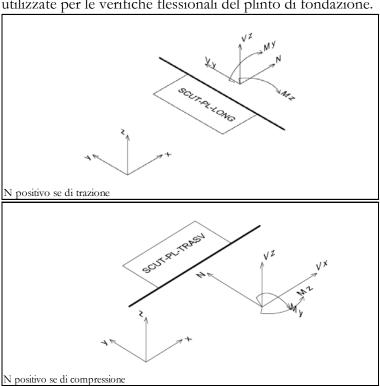


Figura 5-17 Section cut sui muri andatori


LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.1. Verifiche del plinto di fondazione

5.5.1.1. Plinto - Sollecitazioni di progetto

Di seguito sono riportate le massime sollecitazioni ottenute applicando tutte le combinazioni di carico e utilizzate per le verifiche flessionali del plinto di fondazione.

PRESSOFLESSIONE - SECTION-CUT PIU' SOLLECITATA						
SECTION CUT	COMBINAZIONE		N [kN]	M y [kN*m]	M z [kN*m]	
SCUT_PL_LONG_2	01-SLU-STR	MAX	-240,4	694,6	2,8	
SCUT_PL_LONG_2	01-SLU-STR	MIN	-322,8	-467,0	-63,2	
SCUT_PL_TRASV_2	01-SLU-STR	MAX	-223,3	43,9	815,7	
SCUT_PL_TRASV_2	01-SLU-STR	MIN	-223,3	-44,0	-835,2	

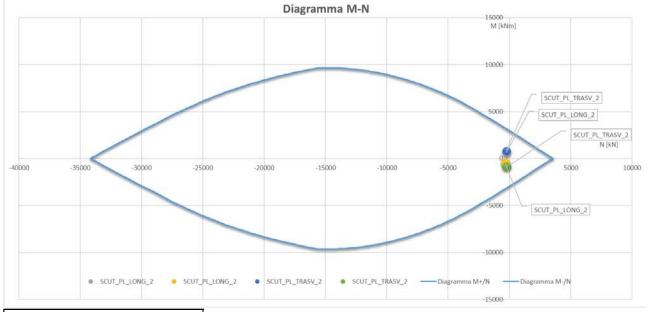
TAGLIO - SECTION-CUT PIU' SOLLECITATA						
SECTION CUT	COMBINAZIONE		N [kN]	Vz [kN]	Vy [kN]	
SCUT_PL_LONG_2	02-SLU-STR	MAX	-274,4	1727,7	-10,2	
SCUT_PL_LONG_2	14-SLV-STR	MIN	-322,8	-416,8	114,5	
SCUT_PL_TRASV_2	01-SLU-STR	MAX	-46,8	1676,0	-187,7	
SCUT_PL_TRASV_2	01-SLU-STR	MIN	38,2	-420,5	-497,4	

STUDIO GEOTECNICO ITALIANO #

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

FESSURAZIONE - SECTION-CUT PIU' SOLLECITATA						
SECTION CUT	COMBINAZIONE	N [kN]	Mmax [kN*m]			
SCUT_PL_LONG_2	34-SLE-FREQ	-148,4	439,6			
SCUT_PL_TRASV_1	34-SLE-FREQ	59,4	488,4			
SCUT_PL_LONG_2	36-SLE-QPERM	-128,2	378,8			
SCUT_PL_TRASV_2	36-SLE-QPERM	-25,1	412,1			

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA


Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.1.2. Plinto - Verifiche a pressoflessione

Si riportano le verifiche allo stato limite ultimo effettuate sulle Section Cut della platea più sollecitate. Il copriferro delle barre (ricoprimento) è di 4 cm. Le armature longitudinali sono:

- Φ24/10" superiori
- Φ24/10" inferiori

DATI GEOMETRICI DELLA SEZIONE					
Base = B =	100,00	cm			
Altezza = H =	180,00	cm			
Copriferro = c =	6,40	cm			
Altezza utile = d =	173,6	cm			
	n. barre	diametro [mm]	Area		
Armatura zona tesa = Aft =	10	24 = 4,52	45,24 cmq		
Armatura zona compressa = Afc =	10	24 = 4,52	45,24 cmq		

Limitazioni d'armatura					
ρ	$\rho \min \rho > \rho \min$				
0,50%	0,1%	ok			
Ф	Ф тах	$\Phi < \Phi \min$			
24	180	ok			

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.1.3. Plinto - Verifiche a taglio

Si riportano i valori di taglio massimo ottenuti sulle Section Cut della platea.

Le armature a taglio sono:

• Ф16/20"

VERIFICA A TAGLIO SECONDO NTC '18

Dati di input				
1) Sollecitazioni				
Taglio Massimo sollecitante			V_{Ed}	1727,65 kN
Combinazione corrispondente				02-SLU-STR
			$\gamma_{ m Rd} =$	1
			$V_{Ed} = V *_{\gamma Rd} =$	1727,65 kN
2) Armature longitudinali				
Numero di barre e diametro armatura tesa	n.	10	ф	24 mm
Area armatura longitudinale tesa			$A_{s,long}$	4521,6 mm ²
3) Parametri sezione				
Larghezza minima della sezione in zona tesa			$b_{\rm w}$	1000 mm
Altezza della sezione			Н	1800 mm
Copriferro			c	64 mm
Altezza utile della sezione			d	1736 mm
Forza assiale dovuta ai carichi o alla precompressione			$N_{\rm Ed}$	274,44 kN
4) Caratteristiche cls				
Tipologia di calcestruzzo				C30/37
Coefficiente riduttivo della resistenza del calcestruzzo			Υ _c	1,5
Resistenza a compressione cilindrica			f_{ck}	30 MPa
Resistenza a compressione di progetto			f_{cd}	17,00 MPa
5) Caratteristiche dell'acciaio				
Tipologia di acciaio				B450C
Coefficiente riduttivo della relistenza dell'acciaio			Ϋ́s	1,15
Tensione di snervamento caratteristica			f_{yk}	450 MPa
Tensione di snervamento di progetto			f_{vd}	391,30 MPa

Verifica a taglio di elementi senza armature trasversali	- §4.1.2.1.3.1	
	v_{min}	0,2972
	k	1,3394
	$\mathbf{\rho}_1$	0,0026
	$\sigma_{ m cp}$	0.1525 N/mm^2
	V_{Rd}	593,4
V	erifica (V _{Rd} >V _{ed})	no
	NECESSARIA	ARMATURA A TAGLIO

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

RELAZIONE TECNICA E DI CALCOLO

Verifica elementi con armature trasversali resistenti al taglio - §4.1.2.1.3.2					
Resistenza a compressione ridotta del calcestruzzo	f'cd	8,5000	MPa		
Coeff. Maggiorativo per (pre)compressione	α_{c}	1,0090			
Braccio delle forze interne	z		mm		
Diametro delle staffe	Φ_{st}	16	mm		
Numero di bracci staffe	n_{b}	5			
Passo delle staffe	S	200	mm		
Quantitativo di staffe a metro	$A_{\mathrm{sw,s}}$	5024,00	mm2/m2		
Inclinazione staffe	a	90	0		
Inclinazione puntone	θ	45	0		
Verifiche di armatura minima a taglio secondo - §4.1.6.1.1					
Resistenza a taglio del puntone di cls	V_{Rcd}	6699,75	kN		
Resistenza a taglio del tirante di acciaio	V_{Rsd}	3071,54	kN		
Resistenza a taglio di progetto = min (VRsd,VRcd) > Ved	V_{Rd}	3071,54	kN		
	Verifica (V _{Rd} >V _{ed})	ok			
Limitazioni di armatura delle pareti - §7.4.6.2.4			•		
$\rho > 0.2 \%$		ok			
$\Phi > s_{\text{parete}}/10$		ok			
Q.tà legature $> 9/m^2$		ok			

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Plinto - Verifiche a punzonamento

VERIFICA A PUNZONAMENTO

1) Dati di input						
Riferimenti normativi	§6,4 EC2 + §4.1.2.3	\$6,4 EC2 + \$4.1.2.3.5.4 NTC18				
Tipologia strutturale	PALO DI FONDAZ	ZIONE DI BORDO				
Forma del palo	CIRCOLARE					
Caratteristiche meccaniche de	ei materiali					
Calcestruzzo						
Tipologia di calcestruzzo			C30/37			
Resistenza caratteristica a compres	ssione	R_{ck}	37 MPa			
Resistenza a compressione cilindric	ca	f_{ck}	30,71 MPa			
Resistenza a compressione di prog	etto	f_{cd}	17,40 MPa			
Coefficiente riduttivo della resiste	nza del calcestruzzo	Υ _c	1,5			
Acciaio						
Tipologia di acciaio			B450C			
Tensione di snervamento caratteri	stica	f_{yk}	450 MPa			
Tensione di snervamento di proget	to	f_{yd}	391,30 MPa			
Coefficiente riduttivo della relister	nza dell'acciaio	$\gamma_{\rm s}$	1,15			
Coefficiente riduttivo per fessuraz	ione del cls	V	0,5			
2) Dati geometrici del pila	astro e della soletta					
Diametro del palo		Φ	1000 mm			
Spessore della plate di fondazione		Н	1800 mm			
Copriferro (Ricoprimento armatur	e)	сор	40 mm			
Altezza capitello (se assente inserii	re 0)	h _H	0 mm			
3) Armature longitudinali	del plinto					
Diametro massimo armature tese l	ongitudinali	Фх	24 mm			
Diametro massimo armature tese t	rasversali	Фу	24 mm			
Passo armature longitudinali		S _x	150 mm			
Passo armature trsversali		Sy	150 mm			
Altezza utile armature tese longitu	dinali	d_x	1748 mm			
Altezza utile armature tese trasver	sali	d _v	1724 mm			
Altezza utile media della piastra		d	1736 mm			
Rapporto geometrico di armatura	longitudinale tesa	$ ho_{lx}$	0,00174			
Rapporto geometrico di armatura		$ ho_{ly}$	0,00174			
3) Sollecitazioni		·				
Reazione del palo più caricato		N	2368,80 kN			
Momento flettente longitudinale		Mx	19,10 kNm			
Taglio longitudinale		Vx	311,00 kN			
Momento flettente trasversale		My	474,20 kNm			
Taglio trasversale		Vy	18,60 kN			
Combinazione			02-SLU-STR			

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

4) VERIFICA A PUNZONAMENTO, PIAST	'RA PRIVA DI A	RMATURE
Contorno dell'area caricata dal palo	u_0	3142 mm
Distanza diametro palo-perimetro di verifica (≤2d)	dd	3472 mm
Perimetro di verifica di base	$u_\mathtt{1}$	6519 mm
Coeff. riduttivo k	k	1,34
	ρ_{l}	0,00174
	$\sigma_{\sf cp}$	0,00 MPa
	k_1	0,10
	$C_{Rd,c}$	0,12
	v_{min}	0,30
	$v_{min +} k_1 \sigma_{cp}$	0,30
	v _{Rd,c} (*)	0,281 MPa
Eccentricità del carico applicato	е	0,061 m
Maggiorazione della τ di punz. Dovuta a flessione	β	1,0000
Forza tagliante applicata di progetto per carico eccentrico	v_{Ed}	0,434 MPa
Resistenza di progetto a punzonamento	$v_{Rd,c}$	0,301 MPa
Verifica del punzonamento lungo il perimetro u ₀	$v_{Ed} < v_{Rd,C}$	NO
		NECESSARIA
		ARMATURA A
	PI	UNZONAMENTO

5) VERIFICA A PUNZONAMENTO, PIASTRA	CON AR	MATURE A TAGLIO
Diametro delle staffe	Φ_{st}	16 mm
Numero di bracci staffe	$n_{\rm b}$	5
Passo delle staffe	S	200 mm
Armatura a taglio presente	$A_{sw,s}$	$5024 \text{ mm}^2/\text{m}^2$
Passo radiale dell'armatura a taglio di punzonamento	S_r	200 mm
Resistenza di progetto efficace dell'armatura a taglio punzonamento	$f_{ywd,ef}$	391,3 MPa
Angolo compreso tra l'armtura a taglio e il piano della piastra	α	90 °
Resistenza di progetto a punzonamento (perimetro u ₀)	$v_{Rd,cs}$	4,92 Mpa
Resistenza di progetto a punzonamento (perimetro u ₁)	$v_{Rd,cs}$	2,49 Mpa
Verifica del punzonamento lungo il perimetro u ₀	$v_{\rm Ed} < v_{\rm Rd,cs}$	OK
Verifica del punzonamento lungo il perimetro u ₁	$v_{Ed} < v_{Rd,cs}$	OK

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.1.5. Plinto - Verifiche a fessurazione

Si riportano le verifiche allo Stato Limite di fessurazione.

Le combinazioni in esame sono quelle di tipo frequente e quasi permanente. In condizioni ambientali ordinarie e per armatura poco sensibile, per la combinazione frequente si verifica che sia soddisfatta la seguente condizione:

$$w_d < w_3 = 0.4mm$$

Si ripete la verifica per la combinazione quasi permanente:

$$w_d < w_2 = 0.3mm$$

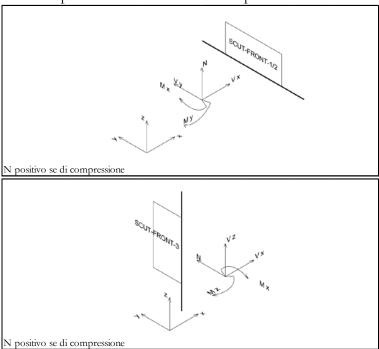
LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

VERIFICA A STATO LIMITE DI FESSURAZIONE

Platea			
SLE-FREQUENTE →w ₃ =0,4mm			
N sollecitante solo se di trazione	N_{Ed}	59,35	kN
M sollecitante	M_{Ed}	488,43	kNm
	COMBO	34-SLE-FREQ	
Base	b	1000	[mm]
Altezza	h	1800	[mm]
Ricoprimento barre longitudinali	c	40	[mm]
	d	1748	[mm]
	X	795,9	[mm]
Diametro dei ferri longitudinali	Ø	24	[mm]
Numero dei ferri	n Fe	10	
Area dell'armatura longitdinale	As	4523,9	[mm2]
Coefficiente per barre ad aderenza migliorata.	β1	1	
Coefficiente per azioni di lunga durata o nel caso di azioni ripetute	β2	0,5	
	β	0,6769	
	Es	210000	[N/mm2]
	σs		[N/mm2]
>=0.4	(1-β1β2β2)	0,7709	
Deformazione media unitaria= σs (1-β1β2β2)/Es	esm	0,00044	
$min((h-x)/2; c+7,5\emptyset)$	deff		[mm]
base calcestruzzo efficace	beff	970	[mm]
Area calcestruzzo efficace =deff *beff	Ac,eff	213400	
	k3	0,125	
As/Aceff	6	0,02120	
	S	100	[mm]
barre ad aderenza migliorata	k2	0,4	
distanza media fra le fessure = $2(c+s/10) + k2k3\emptyset/Q$	Δ_{sm} :	156,6	[mm]
apertura delle fessure = 1,7 Δ sm esm	wd	0,1179	[mm]
Verifica	$w_d \le w_3$	ok	
SLE-QUASI PERMANENTE →w ₂ =0,3mm			
N sollecitante solo se di trazione	N_{Ed}	0,00	
M sollecitante	M_{Ed}	412,05	kNm
	COMBO	36-SLE-QPERM	
	σs	47,4	[N/mm2]
Deformazione media unitaria= σs (1-β1β2β2)/Es	esm	0,0001739	
distanza media fra le fessure = $2(c+s/10) + k2k3\emptyset/\varrho$	Δ_{sm} :	169,4	[mm]
apertura delle fessure = 1,7 Δ sm esm	wd	0,0501	[mm]
Verifica	$w_d < w_2$	ok	

Mandataria


LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.2. Verifiche del muro frontale

5.5.2.1. Muro frontale - Sollecitazioni di progetto

Di seguito sono riportate le massime sollecitazioni ottenute applicando tutte le combinazioni di carico e utilizzate per le verifiche flessionali del plinto di fondazione.

Le sollecitazioni in direzione longitudinale sono le seguenti:

PRESSOFLESSIONE - SECTION-CUT PIU' SOLLECITATA					
I SECTION CUT I COMBINAZIONE I I II I					M x [kN*m]
SCUT_FRONT_1	15-SLV-STR	MAX	238,4	-36,4	-54,2
SCUT_FRONT_2	14-SLV-STR	MIN	1296,0	-689,0	143,7

Le sollecitazioni in direzione trasversale sono le seguenti:

PRESSOFLESSIONE - SECTION-CUT PIU' SOLLECITATA					
I SECTION CUT I COMBINAZIONE I I II I					M z [kN*m]
SCUT_FRONT_3	14-SLV-STR	MAX	-100,5	-38,8	132,6
SCUT_FRONT_4	14-SLV-STR	MIN	86,2	35,6	-129,7

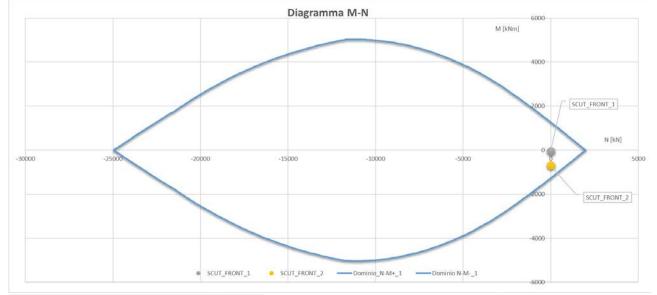
Per il taglio le azioni massime sono:

TAGLIO - SECTION-CUT PIU' SOLLECITATA					
SECTION CUT COMBINAZIONE N V X V Y [kN] [kN]					
SCUT_FRONT_1	15-SLV-STR	MAX	238,4	-97,2	106,6
SCUT_FRONT_2	14-SLV-STR	MIN	1295,977	-387,6	-76,675

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

FESS	FESSURAZIONE - SECTION-CUT PIU' SOLLECITATA					
SECTION CUT COMBINAZIONE N M) [kN] [kN*r						
SCUT_FRONT_1	34-SLE-FREQ	MAX	688,7	-212,9		
SCUT_FRONT_2	34-SLE-FREQ	MIN	705,8	-213,5		
SCUT_FRONT_1	36-SLE-QPERM	MAX	547,2	-178,1		
SCUT_FRONT_2	36-SLE-QPERM	MIN	561,2	-178,5		

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA


Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.2.2. Muro frontale - Verifiche a pressoflessione

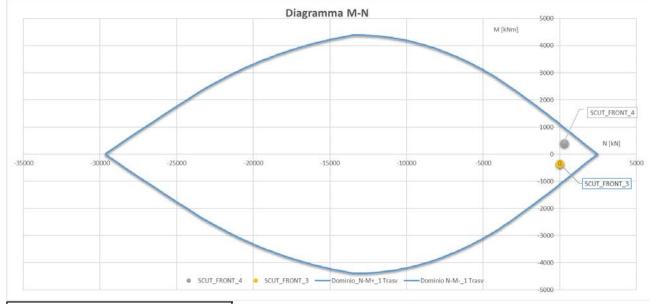
Si riportano le verifiche allo stato limite ultimo delle Section Cut del muro frontale più sollecitate. Il copriferro delle barre (ricoprimento) è di 4 cm. Le armature longitudinali sono:

- Una fila di Φ18/10" zona tesa
- Una fila di Φ18/10" zona compressa

DATI GEOMETRICI DELLA SEZIONE						
Base = B =	100,00	cm				
Altezza = H = 135,00 cm						
Copriferro = $c = 4,00$ cm						
Altezza utile = d =	131	cm				
	n. barre	diame	etro	[mm]	Are	ea
Armatura zona tesa = Aft =	10	18	=	2,54	25,45	cmq
Armatura zona compressa = Afc =	10	18	=	2,54	25,45	cmq

Limitazioni d'armatura						
ρ $\rho \min \rho > \rho \min$						
0,38%	0,2%	ok				

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001


RELAZIONE TECNICA E DI CALCOLO

Si riportano le verifiche allo stato limite ultimo delle Section Cut del muro frontale più sollecitate in direzione trasversale.

Il copriferro delle barre (ricoprimento) è di 5 cm. Le armature longitudinali sono:

- Una fila di Φ18/10" zona tesa
- Una fila di Φ18/10" zona compressa

DATI GEOMETRICI DELLA SEZIONE						
Base = B =	100,00	cm				
Altezza = H =	135,00	cm				
Copriferro = c =	6,00	cm				
Altezza utile = d =	129	cm				
_	n. barre	diam	etro	[mm]	Are	ea
Armatura zona tesa = Aft =	10	18	=	2,54	25,45	cmq
Armatura zona compressa = Afc =	10	18	=	2,54	25,45	cmq

Limitazioni d'armatura					
ρ ρ min $\rho > \rho$ min					
0,39%	0,2%	ok			

Pag.

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.2.3. Muro frontale - Verifiche a taglio

Si riportano le verifiche allo stato limite ultimo delle Section Cut della platea più sollecitate a taglio elencate nel seguito.

Le armature a taglio sono:

• Ф12/20"

Pag.

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

VERIFICA A TAGLIO SECONDO NTC '18

Dati di input					
1) Sollecitazioni					
Taglio Massimo sollecitante			V_{Ed}	387,63	kN
Combinazione corrispondente				14-SLV-STR	
			$\gamma_{ m Rd} =$	1	
			$V_{Ed} = V *_{\gamma Rd} =$	387,63	kN
2) Armature longitudinali					
Numero di barre e diametro armatura tesa	n.	10	ф	18	mm
Area armatura longitudinale tesa			$A_{s,long}$	2543,4	mm^2
3) Parametri sezione					
Larghezza minima della sezione in zona tesa			$b_{\rm w}$	1000	mm
Altezza della sezione			Н	1350	mm
Copriferro			c	40	mm
Altezza utile della sezione			d	1310	mm
Forza assiale dovuta ai carichi o alla precompressione			N_{Ed}	1295,98	kN
4) Caratteristiche cls					
Tipologia di calcestruzzo				C30/37	
Coefficiente riduttivo della resistenza del calcestruzzo			Ϋ́c	1,5	
Resistenza a compressione cilindrica			f_{ck}	30	MPa
Resistenza a compressione di progetto			f_{cd}	17,00	MPa
5) Caratteristiche dell'acciaio					
Tipologia di acciaio				B450C	
Coefficiente riduttivo della relistenza dell'acciaio			Ϋ́s	1,15	
Tensione di snervamento caratteristica			f_{yk}	450	MPa
Tensione di snervamento di progetto			f_{yd}	391,30	MPa

Verifica a taglio di elementi senza armature trasversali - §4.1.2.1.3.1						
$ m v_{min}$	0,3144					
k	1,3907					
ρ_1	0,0019					
$\sigma_{ m cp}$	$0,9600 \text{ N/mm}^2$					
$ m V_{Rd}$	581,99					
Verifica (V _{Rd} >V _{ed})	ok					
NON NECESSITA ARMATURA A TAGLIC						

Armatura minima per pareti			
Diametro delle staffe	Φ_{st}	12	mm
Numero di bracci staffe	n_{b}	5	
Passo delle staffe	S	200	mm
Quantitativo di staffe a metro	$A_{sw,s}$	2826,00	mm2/m2
Limitazioni di armatura delle pareti - \$7.4.6.2.4			
$\rho > 0.2 \%$		ok	
$\rho > 0.2 \%$ $\Phi > s_{parete}/10$		ok	
Q.tà legature $> 9/m^2$		ok	

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Muro frontale - Verifiche a fessurazione

Si riportano le verifiche allo Stato Limite di Fessurazione.

Le combinazioni in esame sono quelle di tipo frequente e quasi permanente. In condizioni ambientali ordinarie e per armatura poco sensibile, per la combinazione frequente si verifica che sia soddisfatta la seguente condizione:

$$w_d < w_3 = 0.4mm$$

Si ripete la verifica per la combinazione quasi permanente:

$$w_d < w_2 = 0.3mm$$

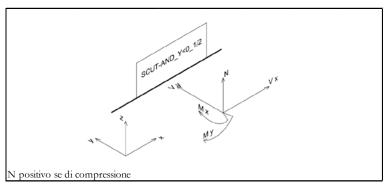
Mandanti

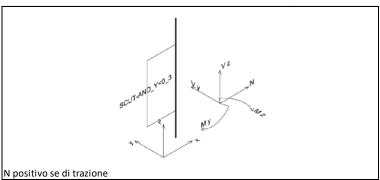
LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Muro Frontale			
SLE-FREQUENTE →w ₃ =0,4mm			
N sollecitante solo se di trazione	Ned	0,00	kN
M sollecitante	Med	213,50	kNm
	COMBO	34-SLE-FREQ	
Base	b	1000	[mm]
Altezza	h	1350	[mm]
Ricoprimento barre longitudinali	c	40	[mm]
	d	1301	[mm]
	X	587,5	[mm]
Diametro dei ferri longitudinali	Ø	18	[mm]
Numero dei ferri	n Fe	10	
Area dell'armatura longitdinale	As	2544,7	[mm2]
Coefficiente per barre ad aderenza migliorata.	β1	1	
Coefficiente per azioni di lunga durata o nel caso di azioni ripetute	β2	0,5	
	β	0,6769	
	Es	210000	[N/mm2]
	σs	110,0	[N/mm2]
>=0.4	$(1-\beta 1\beta 2\beta 2)$	0,7709	
Deformazione media unitaria= σs (1-β1β2β2)/Es	esm	0,0004039	
$\min((h-x)/2; c+7,5\emptyset)$	deff	175	[mm]
base calcestruzzo efficace	beff	1000	[mm]
Area calcestruzzo efficace =deff *beff	Ac,eff	175000	[mm2]
	k3	0,125	
As/Aceff	6	0,01454	
	S	100	[mm]
barre ad aderenza migliorata	k2	0,4	
distanza media fra le fessure = $2(c+s/10) + k2k3\emptyset/\varrho$	Δ_{sm} :	161,9	[mm]
apertura delle fessure = 1,7 Δ sm esm	wd	0,1112	[mm]
Verifica	w _d <w<sub>3</w<sub>	ok	
SLE-QUASI PERMANENTE →w ₂ =0,3mm			
N sollecitante solo se di trazione	Ned	0,00	kN
M sollecitante	Med	178,51	kNm
	COMBO	36-SLE-QPERM	
	σs	92,0	[N/mm2]
Deformazione media unitaria= σs (1-β1β2β2)/Es	esm	0,0003377	
distanza media fra le fessure = $2(c+s/10) + k2k3\emptyset/\varrho$	$\Delta_{ m sm}$:	161,9	[mm]
apertura delle fessure = 1,7 Δ sm ssm	wd	0,0930	
Verifica	$w_d < w_2$	ok	1

Mandataria


LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA


Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.3. Verifiche del muro andatore

5.5.3.1. Muro andatore - Sollecitazioni di progetto

Di seguito sono riportate le sollecitazioni di calcolo utilizzate per le verifiche flessionali del muro andatore esterno, separando le SectionCut per la verifica delle armature in direzione longitudinale da quelle per le verifiche in direzione trasversale.

Le sollecitazioni in direzione longitudinale sono le seguenti:

		0		0		
PRESSOFLESSIONE - SECTION-CUT PIU' SOLLECITATA						
SECTION CUT	COMBINAZIONE		N [kN]	Mx [kN*m]	My [kN*m]	
SCUT_AND_Y<0_1	16-SLV-STR	MAX	35,5	-24,3	-7,5	
SCUT_AND_Y<0_1	16-SLV-STR	MIN	147,9	-132,9	-20,3	

Le sollecitazioni in direzione trasversale sono le seguenti:

PRESSOFLESSIONE - SECTION-CUT PIU' SOLLECITATA						
SECTION CUT	TION CUT COMBINAZIONE N My Mz [kN*m] [kN*m]				Mz [kN*m]	
SCUT_AND_Y<0_3	15-SLV-STR	MAX	-211,4	-34,8	-53,7	
SCUT_AND_Y<0_3	14-SLV-STR	MIN	550,1	86,9	-99,0	

Le azioni taglianti di progetto sono:

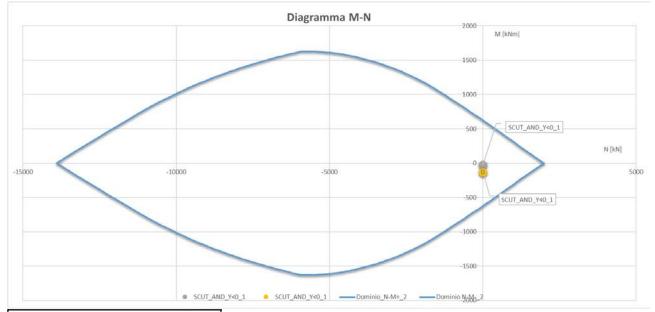
LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

TAGLIO - SECTION-CUT PIU' SOLLECITATA					
SECTION CUT	COMBINAZIONE		N [kN]	Vx [kN]	Vy [kN]
SCUT_AND_Y<0_2	15-SLV-STR	MAX	111,9	434,5	19,7
SCUT_AND_Y<0_1	14-SLV-STR	MIN	43,2	542,5	-337,7

FESSURAZIONE - SECTION-CUT PIU' SOLLECITATA				
SECTION CUT	COMBINAZIONE		N [kN]	M X [kN*m]
SCUT_AND_Y<0_1	34-SLE-FREQ	MAX	57,7	-43,0
SCUT_AND_Y<0_2	34-SLE-FREQ	MIN	109,4	-98,7
SCUT_AND_Y<0_1	36-SLE-QPERM	MAX	53,5	-39,3
SCUT_AND_Y<0_2	36-SLE-QPERM	MIN	110,3	-100,2

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA


Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.3.2. Muro andatore - Verifiche a pressoflessione

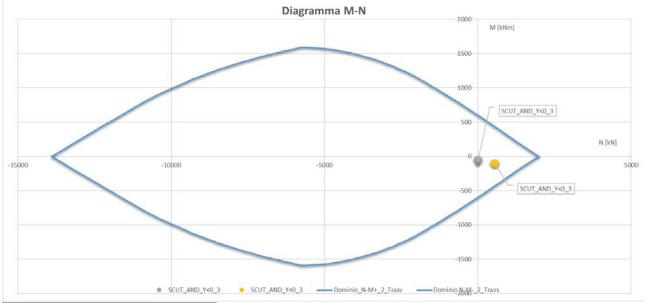
Si riportano le verifiche allo stato limite ultimo delle Section Cut del muro andatore più sollecitate. Il copriferro delle barre (ricoprimento) è di 4 cm. Le armature longitudinali sono:

- Una fila di Φ18/10" zona tesa
- Una fila di Φ18/10" zona compressa

DATI GEOMETRICI DELLA SEZIONE						
Base = B =	100,00	cm				
Altezza = H =	70,00	cm				
Copriferro = c =	4,00	cm				
Altezza utile = d =	66	cm				
	n. barre	diame	etro	[mm]	Are	ea
Armatura zona tesa = Aft =	10	18	=	2,54	25,45	cmq
Armatura zona compressa = Afc =	10	18	=	2,54	25,45	cmq

Limitazioni d'armatura				
ρ	ρ min	ρ > ρ min		
0,73%	0,2%	ok		

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA


Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Si riporta la verifica effettuata in direzione trasversale.

Il copriferro delle barre (ricoprimento) è di 5 cm. Le armature trasversali sono:

- Una fila di Φ18/10" zona tesa
- Una fila di Φ18/10" zona compressa

DATI GEOMETRICI DELLA SEZIONE						
Base = B =	100,00	cm				
Altezza = H =	70,00	cm				
Copriferro = c =	6,00	cm				
Altezza utile = d =	64	cm				
	n. barre	diame	etro	[mm]	Are	ea
Armatura zona tesa = Aft =	10	18	=	2,54	25,45	cmq
Armatura zona compressa = Afc =	10	18	=	2,54	25,45	cmq

Limitazioni d'armatura				
ρ	ρ min	ρ > ρ min		
0,73%	0,2%	ok		

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.3.3. Muro andatore - Verifiche a taglio

Si riportano le sollecitazioni attese agli stati limite considerati nelle Section Cut del muro andatore più sollecitate a taglio.

Le armature a taglio sono:

• Ф10/10"

VERIFICA A TAGLIO SECONDO NTC '08

Dati di input					
1) Sollecitazioni					
Taglio Massimo sollecitante			V_{Ed}	337,67 k	N
Combinazione corrispondente				14-SLV-STR	
			$\gamma_{ m Rd} =$	1	
			$V_{Ed} = V *_{\gamma Rd} =$	337,67 k	N
2) Armature longitudinali					
Numero di barre e diametro armatura tesa	n.	10	ф	18 m	nm
Area armatura longitudinale tesa			$A_{s,long}$	2543,4 m	nm²
3) Parametri sezione					
Larghezza minima della sezione in zona tesa			$b_{\rm w}$	1000 m	nm
Altezza della sezione			Н	700 m	nm
Copriferro			c	40 m	nm
Altezza utile della sezione			d	660 m	nm
Forza assiale dovuta ai carichi o alla precompressione			N_{Ed}	43,24 k	N
4) Caratteristiche cls					
Tipologia di calcestruzzo				C30/37	
Coefficiente riduttivo della resistenza del calcestruzzo			γ _c	1,5	
Resistenza a compressione cilindrica			f_{ck}	30 N	ſРа
Resistenza a compressione di progetto			f_{cd}	17,00 M	ſРа
5) Caratteristiche dell'acciaio					
Tipologia di acciaio				B450C	
Coefficiente riduttivo della relistenza dell'acciaio			Ϋ́s	1,15	
Tensione di snervamento caratteristica			f_{yk}	450 M	I Pa
Tensione di snervamento di progetto			f_{vd}	391,30 M	ſРа

Verifica a taglio di elementi senza armature trasversali - §4.1.2.1.3.1				
	$ m v_{min}$	0,3701		
	k	1,5505		
	$ ho_1$	0,0039		
	$\sigma_{ m cp}$	0.0618 N/mm^2		
	$ m V_{Rd}$	283,78		
	Verifica (V _{Rd} >V _{ed})	no		
	NECESSARIA ARMATURA	A A TAGLIO		

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto

1346-PO-S11-PD-TGPN-19-01-E001 RELAZIONE TECNICA E DI CALCOLO

Verifica elementi con armature trasversali resiste	enti al taglio - § 4.1.2.1.3	3.2	
Resistenza a compressione ridotta del calcestruzzo	f' _{cd}	8,5000	MPa
Coeff. Maggiorativo per (pre)compressione	α_{c}	1,0036	
Braccio delle forze interne	z		mm
Diametro delle staffe	Φ_{st}	12	mm
Numero di bracci staffe	n_b	5	
Passo delle staffe	S	200	mm
Quantitativo di staffe a metro	$A_{sw,s}$	2826	mm2/m2
Inclinazione staffe	a	90	0
Inclinazione puntone	θ	45	0
Verifiche di armatura minima a taglio secondo - §4.1.6.1.	1		
Resistenza a taglio del puntone di cls	$V_{ m Rcd}$	2533,67	kN
Resistenza a taglio del tirante di acciaio	$ m V_{Rsd}$	656,86	kN
Resistenza a taglio di progetto = min (VRsd,VRcd) > Ved	V_{Rd}	656,86	kN
	Verifica (V _{Rd} >V _{ed})	ok	
Limitazioni di armatura delle pareti - §7.4.6.2.4			
ρ > 0,2 %		ok	
$\Phi > s_{parete}/10$		ok	
Q.tà legature $> 9/m^2$		ok	

Mandanti

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Muro andatore - Verifiche a fessurazione

Si riportano le verifiche allo Stato Limite di fessurazione.

Le combinazioni in esame sono quelle di tipo frequente e quasi permanente. In condizioni ambientali ordinarie e per armatura poco sensibile, per la combinazione frequente si verifica che sia soddisfatta la seguente condizione:

$$w_d < w_3 = 0.4mm$$

Si ripete la verifica per la combinazione quasi permanente:

$$w_d < w_2 = 0.3mm$$

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Muro Andatore			
SLE-FREQUENTE →w ₃ =0,4mm			
N sollecitante solo se di trazione	Ned	110,35	kN
M sollecitante	Med	100,15	kNm
	COMBO	36-SLE-QPERM	
Base	b	1000	[mm]
Altezza	h	700	[mm]
Ricoprimento barre longitudinali	c	40	[mm]
	d	651	[mm]
	X	315,5	[mm]
Diametro dei ferri longitudinali	Ø	18	[mm]
Numero dei ferri	n Fe	10	
Area dell'armatura longitdinale	As	2544,7	[mm2]
Coefficiente per barre ad aderenza migliorata.	β1	1	
Coefficiente per azioni di lunga durata o nel caso di azioni ripetute	β2	0,5	
	β	0,6769	
	Es	210000	[N/mm2]
	σs	59,0	[N/mm2]
>=0.4	$(1-\beta 1\beta 2\beta 2)$	0,7709	
Deformazione media unitaria= σs (1-β1β2β2)/Es	esm	0,0002166	
$\min((h-x)/2; c+7,5\emptyset)$	deff	175	[mm]
base calcestruzzo efficace	beff	1000	[mm]
Area calcestruzzo efficace =deff *beff	Ac,eff	175000	[mm2]
	k3	0,125	
As/Aceff	Q	0,01454	
	S	100	[mm]
barre ad aderenza migliorata	k2	0,4	
distanza media fra le fessure = $2(c+s/10) + k2k3\emptyset/\varrho$	Δ_{sm} :	161,9	[mm]
apertura delle fessure = 1,7 Δ sm esm	wd	0,0596	[mm]
Verifica	w _d <w<sub>3</w<sub>	ok	
SLE-QUASI PERMANENTE →w ₂ =0,3mm			
N sollecitante solo se di trazione	Ned	110,35	kN
M sollecitante	Med	100,15	kNm
	COMBO	36-SLE-QPERM	
	σs	8,3	[N/mm2]
Deformazione media unitaria= σs (1-β1β2β2)/Es	esm	0,0000303	-
distanza media fra le fessure = $2(c+s/10) + k2k3\emptyset/\varrho$	$\Delta_{ m sm}$:	161,9	[mm]
apertura delle fessure = 1,7 Δ sm ssm	wd	0,0083	
Verifica	$w_d < w_2$	ok	

Mandataria

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.4. Verifiche del muro paraghiaia

5.5.4.1. Paraghiaia - Sollecitazioni di progetto

Le azioni sul muro paraghiaia vengono combinate secondo i coefficienti della Combinazione 01-SLU-STR.

Le sollecitazioni di progetto sono le seguenti:

COMBO SLU-STR	
Y G1	1,35
Y _{G1} Y _{G2}	1,5
γ_{Q}	1,45
$(s_{terr}\gamma_{G1} + s_{ballast}\gamma_{G2} + s_N\gamma_Q + s_f\gamma_Q)$	
$ m V_{Ed}$	185,42 kN/m
M_{Ed}	114,19 kNm/m

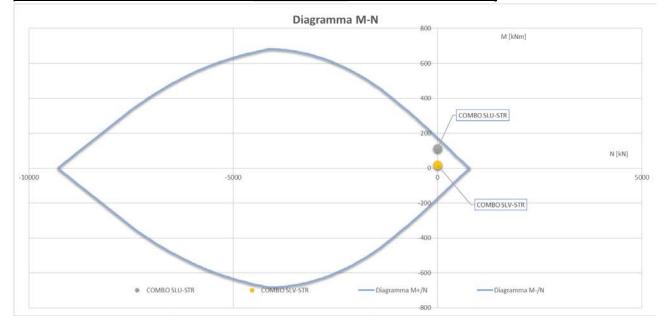
COMBO SLV-STR	
Y G1	1
Y G2	1
Y _{G1} Y _{G2} Y _Q	0,2
$(s_{terr}\gamma_{G1} + s_{ballast}\gamma_{G2} + s_N\gamma_Q + s_f\gamma_Q)$	
V_{Ed}	33,49 kN/m
M_{Ed}	19,45 kNm/m

COMBO SLE-FREQ	
Y _{G1}	1,00
Y _{G2}	1,00
$ \Psi_1 $	0,80
$V_{ m Ed}$	103,05 kN/m
\mathbf{M}_{Ed}	63,43 kNm/m

COMBO SLE-QPERM	
Y _{G1}	1,00
Y G2	1,00
$ \Psi_2 $	0,00
$ m V_{Ed}$	2,93 kN/m
M_{Ed}	1,66 kNm/m

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001


5.5.4.2. Paraghiaia - Verifiche a pressoflessione

Il momento di progetto è ottenuto allo SLU ed è pari a 114.19kNm/m.

Il copriferro delle barre (ricoprimento) è di 4 cm. Le armature longitudinali sono:

- Una fila di Φ16/20" zona tesa
- Una fila di Φ16/20" zona compressa

DATI GEOMETRICI DELLA SEZIONE						
Base = B =	100,00	cm				
Altezza = H =	50,00	cm				
Copriferro = c =	4,00	cm				
Altezza utile = d =	46	cm				
	n. barre	diam	etro	[mm]	Are	a
Armatura zona tesa = Aft =	5	16	=	2,01	10,05	cmq
Armatura zona compressa = Afc =	5	16	=	2,01	10,05	cmq

Limitazioni d'armatura							
ρ $\rho \min$ $\rho > \rho \min$							
0,40%	0,1%	ok					
Ф	Ф тах	$\Phi < \Phi \min$					
16	50	ok					

Armatura di ripartizione						
Armatura necessaria in zona tesa (20% A _{s,long})	2,011	5	16	2,01 10	,053	ok
Armatura necessaria in zona tesa (20% A _{s,long})	2,011	5	16	2,01 10	,053	ok

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.4.3. Paraghiaia - Verifica a taglio

Il taglio di progetto è ottenuto allo SLU ed è pari a 185.42 kN/m. Le armature a taglio sono:

• Ф12/20"

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

VERIFICA A TAGLIO SECONDO NTC '18

Dati di input				
1) Sollecitazioni				
Taglio Massimo sollecitante			V_{Ed}	185,42 kN
Combinazione corrispondente				
			$\gamma_{ m Rd} =$	1
			$V_{Ed} = V *_{\gamma Rd} =$	185,42 kN
2) Armature longitudinali				
Numero di barre e diametro armatura tesa	n.	5	ф	16 mm
Area armatura longitudinale tesa			$A_{s,long}$	$1004,8 \text{ mm}^2$
3) Parametri sezione				
Larghezza minima della sezione in zona tesa			$b_{\rm w}$	1000 mm
Altezza della sezione			Н	500 mm
Copriferro			c	40 mm
Altezza utile della sezione			d	460 mm
Forza assiale dovuta ai carichi o alla precompressione			$N_{\rm Ed}$	0,00 kN
4) Caratteristiche cls				
Tipologia di calcestruzzo				C30/37
Coefficiente riduttivo della resistenza del calcestruzzo			γ _c	1,5
Resistenza a compressione cilindrica			f_{ck}	30 MPa
Resistenza a compressione di progetto			f_{cd}	17,00 MPa
5) Caratteristiche dell'acciaio				
Tipologia di acciaio				B450C
Coefficiente riduttivo della relistenza dell'acciaio			Ϋ́s	1,15
Tensione di snervamento caratteristica			f_{yk}	450 MPa
Tensione di snervamento di progetto			f_{yd}	391,30 MPa

Verifica a taglio di elementi senza armature trasversali - §4.1.2.1.3.1					
	v_{min}	0,4098			
	k	1,6594			
	$ ho_1$	0,0022			
	σ_{cp}	0.0000 N/mm^2			
	V_{Rd}	171,41			
Verifie	ca (V _{Rd} >V _{ed})	no			
NECESSARIA ARMATURA A TAGLIO					

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

RELAZIONE TECNICA E DI CALCOLO

Verifica elementi con armature trasversali resiste	nti al taglio - § 4.1.2.1.3	5.2	
Resistenza a compressione ridotta del calcestruzzo	f'cd	8,5000	MPa
Coeff. Maggiorativo per (pre)compressione	α_{c}	1,0000	
Braccio delle forze interne	Z		mm
Diametro delle staffe	$oldsymbol{\varphi}_{\mathrm{st}}$	12	mm
Numero di bracci staffe	$n_{\rm b}$	5	
Passo delle staffe	S	200	mm
Quantitativo di staffe a metro	$A_{sw,s}$	2826,0	mm2/m2
Inclinazione staffe	a	90	0
Inclinazione puntone	θ	45	0
Verifiche di armatura minima a taglio secondo - §4.1.6.1.1			
Resistenza a taglio del puntone di cls	V_{Rcd}	1759,50	kN
Resistenza a taglio del tirante di acciaio	V_{Rsd}	457,81	kN
Resistenza a taglio di progetto = min (VRsd,VRcd) > Ved	V_{Rd}	457,81	kN
	Verifica (V _{Rd} >V _{ed})	ok	
Limitazioni di armatura delle pareti - §7.4.6.2.4			_
$\rho > 0.2 \%$		ok	
$\Phi > s_{\text{parete}}/10$		ok	
Q.tà legature $> 9/m^2$		ok	

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.5.4.4. Paraghiaia - Verifica a fessurazione

Le sollecitazioni di progetto sono quelle calcolate agli Sati Limite Frequente e Quasi Permanente. In condizioni ambientali ordinarie e per armatura poco sensibile, per la combinazione frequente si verifica che sia soddisfatta la seguente condizione:

$$w_d < w_3 = 0.4mm$$

Si ripete la verifica per la combinazione quasi permanente:

$$w_d < w_2 = 0.3mm$$

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

Muro Paraghiaia			
SLE-FREQUENTE →w ₃ =0,4mm			
N sollecitante solo se di trazione	Ned	0,00	kN
M sollecitante	Med	63,43	kNm
	COMBO	SLE-FREQ	
Base	b	1000	[mm]
Altezza	h	500	[mm]
Ricoprimento barre longitudinali	С	40	[mm]
	d	452	[mm]
	X	217,1	[mm]
Diametro dei ferri longitudinali	Ø	16	[mm]
Numero dei ferri	n Fe	5	
Area dell'armatura longitdinale	As	1005,3	[mm2]
Coefficiente per barre ad aderenza migliorata. Coefficiente per azioni di lunga durata o nel caso di	β1	1	
azioni ripetute	β2	0,5	
	β	0,6769	
	Es	210000	[N/mm2]
	σs	223,0	[N/mm2]
>=0.4	$(1-\beta 1\beta 2\beta 2)$	0,7709	
Deformazione media unitaria= $\sigma s (1-\beta 1\beta 2\beta 2)/Es$	esm	0,0008186	
$min((h-x)/2; c+7,5\emptyset)$	deff	141,4712703	[mm]
base calcestruzzo efficace	beff	1000	[mm]
Area calcestruzzo efficace =deff *beff	Ac,eff	141471,2703	[mm2]
	k3	0,125	
As/Aceff	Q	0,00711	
	S	200	[mm]
barre ad aderenza migliorata	k2	0,4	
distanza media fra le fessure = $2(c+s/10) + k2k3\emptyset/\varrho$	Δ_{sm} :	232,6	[mm]
apertura delle fessure = 1,7 Δ sm esm	wd	0,3237	[mm]
Verifica	$w_d \le w_3$	ok	
SLE-QUASI PERMANENTE →w ₂ =0,3mm			
N sollecitante solo se di trazione	Ned	0,00	kN
M sollecitante	Med		kNm
	COMBO	SLE-QPERM	
	σs		[N/mm2]
Deformazione media unitaria= σs (1-β1β2β2)/Es	esm	0,0000214	
distanza media fra le fessure = $2(c+s/10) + k2k3\emptyset/\varrho$	$\Delta_{ m sm}$:	232,6	[mm]
apertura delle fessure = 1,7 Δ sm esm	wd	0,0085	
Verifica	$w_d < w_2$	ok	1

Mandataria

LINEA PISTOIA – LUCCA – VIAREGGIO/PISA RADDOPPIO DELLA LINEA PISTOIA – LUCCA PISA S.R. TRATTA PESCIA – LUCCA

Ponte stradale su Canale Ozzoretto 1346-PO-S11-PD-TGPN-19-01-E001

5.6. SPALLA - INCIDENZA ARMATURE

	Incidenza Armature Spalla						
	Descrizione	n. barre a ml	Ø [mm]	Lunghezza totale barre a mq [m]	Peso singola barra [kg/ml]	Peso totale armatura a mq [kg]	
	Armatura longitudinale platea (maglia lato inf)	20	24	20,0	3,5510	71,02	
P	Armatura longitudinale platea (maglia lato sup)	20	24	20,0	3,5510	71,02	
L	Armatura interna antifessurazione	20	24	20,0	3,5510	71,02	
A T		n. spilli a mq		L spilli [m]			
E	Armatura trasversale platea	25	16	2,2	1,5780	86,79	
A	Volume CLS soletta spalla [m³]			93,7			
	Totale incidenza Platea [kg/m³]			166,6			
	Armatura longitudinale muro frontale (lato interno)	10	18	10,0	1,9980	19,98	
F R	Armatura longitudinale muro frontale (lato esterno)	10	18	10,0	1,9980	19,98	
O	Armatura di ripartizione (lato interno+lato esterno)	20	18	20,0	1,9980	39,96	
N	Armatura interna antifessurazione	20	18	20,0	1,9980	39,96	
Т		n. spilli a mq		L spilli [m]			
A	Armatura trasversale muro frontale	25	12	1,75	0,8880	38,85	
L E	Volume CLS muro frontale [m³]	29,7					
	Totale incidenza Muro Frontale [kg/m³]	117,6					
	Armatura longitudinale muri andatori (lato interno)	10	18	10,0	1,9980	19,98	
A	Armatura longitudinale muri andatori (lato esterno)	10	18	10,0	1,9980	19,98	
N	Armatura di ripartizione (lato interno+lato esterno)	20	18	20,0	1,9980	39,96	
D	Armatura interna antifessurazione		18	0,0	1,9980	0,00	
A T	Armatura ala posteriore (% d'area)					0,00	
O		n. spilli a mq		L spilli [m]			
R	Armatura trasversale muri andatori (lato interno)	25	12	1,1	0,8880	24,42	
I	Volume CLS muro andatore [m³]			10,6			
	Totale incidenza Muri Andatori [kg/m³]			149,1			
Р	Armatura longitudinale paraghiaia (lato interno)	5	16	5,0	1,5780	7,89	
A R	Armatura longitudinale paraghiaia (lato esterno)	5	16	5,0	1,5780	7,89	
Α	Armatura di ripartizione (lato interno+lato esterno)	10	16	10,0	1,5780	15,78	
G H		n. spilli a mq		L spilli [m]			
I A	Armatura trasversale paraghiaia	25	12	0,9	0,8880	19,98	
1	Volume CLS paraghiaia [m³]			2,4			
А	Totale incidenza paraghiaia [kg/m³]	103,1					

Pag.